Skip to main content
Top

2021 | OriginalPaper | Chapter

Review of the Quantitative Analysis Methods for Social Life Cycle Assessment in Construction

Authors : X. Y. Jiang, X. R. Yao, S. N. Lyu

Published in: Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The life cycle sustainability assessment (LCSA) of construction activities has become a subject of considerable interest globally. However, researchers are mainly devoted to analyzing economic and environmental impact assessment of buildings, and there is a lack of a review of the studies on social impact assessment. Therefore, this study aims to review the quantitative methods for social life cycle assessment (S-LCA) in construction through the bibliometric method. Most of the studies on social impact analysis have adopted qualitative and quantitative methods and this study mainly focuses on the studies that used quantitative analysis methods for social life cycle assessment owing to the space limitation. This study found that the research interest in the life cycle sustainability assessment is gradually rising, primarily focusing on case studies, method comparisons, and new frameworks. However, because social impact assessment has significant limitations in the quantification of inventory, the choice of indicators, and the method of impact assessment, this study proposes that the development of social impact factors in the construction field requires to make more extraordinary efforts in the development of new methods, new software, new technologies, decision-supporting tools, and databases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322. Finkbeiner, M., Schau, E. M., Lehmann, A., & Traverso, M. (2010). Towards life cycle sustainability assessment. Sustainability, 2(10), 3309–3322.
3.
go back to reference Kloepffer. W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89–95. Kloepffer. W. (2008). Life cycle sustainability assessment of products. The International Journal of Life Cycle Assessment, 13(2), 89–95.
4.
go back to reference Ciroth, A., Finkbeier, M., Hildenbrand, J., Klöpffer, W., Mazijn, B., Prakash, S., Sonnemann, G., Valdivia, S., Ugaya, C. M. L., & Vickery-Niederman, G. (2011). Towards a live cycle sustainability assessment: making informed choices on products. UNEP/SETAC Life Cycle Initiative. Ciroth, A., Finkbeier, M., Hildenbrand, J., Klöpffer, W., Mazijn, B., Prakash, S., Sonnemann, G., Valdivia, S., Ugaya, C. M. L., & Vickery-Niederman, G. (2011). Towards a live cycle sustainability assessment: making informed choices on products. UNEP/SETAC Life Cycle Initiative.
5.
go back to reference Kruse, S. A., Flysjö, A., Kasperczyk, N., & Scholz, A. J. (2009). Socioeconomic indicators as a complement to life cycle assessment—an application to salmon production systems. The International Journal of Life Cycle Assessment, 14(1), 8.CrossRef Kruse, S. A., Flysjö, A., Kasperczyk, N., & Scholz, A. J. (2009). Socioeconomic indicators as a complement to life cycle assessment—an application to salmon production systems. The International Journal of Life Cycle Assessment, 14(1), 8.CrossRef
7.
go back to reference Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34–48.CrossRef Martínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., & Finkbeiner, M. (2014). Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. Journal of Cleaner Production, 69, 34–48.CrossRef
8.
go back to reference Fan, L., Pang, B., Zhang, Y., Zhang, X., Sun, Y., & Wang, Y. (2018). Evaluation for social and humanity demand on green residential districts in China based on SLCA. The International Journal of Life Cycle Assessment, 23(3), 640–650.CrossRef Fan, L., Pang, B., Zhang, Y., Zhang, X., Sun, Y., & Wang, Y. (2018). Evaluation for social and humanity demand on green residential districts in China based on SLCA. The International Journal of Life Cycle Assessment, 23(3), 640–650.CrossRef
9.
go back to reference Liu, S., & Qian, S. (2019). Evaluation of social life-cycle performance of buildings: Theoretical framework and impact assessment approach. Journal of Cleaner Production, 213, 792–807.CrossRef Liu, S., & Qian, S. (2019). Evaluation of social life-cycle performance of buildings: Theoretical framework and impact assessment approach. Journal of Cleaner Production, 213, 792–807.CrossRef
10.
go back to reference Santos, P., Pereira, A. C., Gervásio, H., Bettencourt, A., & Mateus, D. (2017). Assessment of health and comfort criteria in a life cycle social context: Application to buildings for higher education. Building and Environment, 123, 625–648.CrossRef Santos, P., Pereira, A. C., Gervásio, H., Bettencourt, A., & Mateus, D. (2017). Assessment of health and comfort criteria in a life cycle social context: Application to buildings for higher education. Building and Environment, 123, 625–648.CrossRef
11.
go back to reference Yasantha Abeysundara, U. G., & Babel, S. (2010). A quest for sustainable materials for building elements in Sri Lanka: Foundations. Environmental Progress & Sustainable Energy, 29(3), 370–381.CrossRef Yasantha Abeysundara, U. G., & Babel, S. (2010). A quest for sustainable materials for building elements in Sri Lanka: Foundations. Environmental Progress & Sustainable Energy, 29(3), 370–381.CrossRef
12.
go back to reference Yung, P., & Wang, X. (2014). A 6D CAD model for the automatic assessment of building sustainability. International Journal of Advanced Robotic Systems, 11(8), 131.CrossRef Yung, P., & Wang, X. (2014). A 6D CAD model for the automatic assessment of building sustainability. International Journal of Advanced Robotic Systems, 11(8), 131.CrossRef
13.
go back to reference Dong, Y. H., Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. International Journal of Life Cycle Assessment, 20(8),1166–1180. Dong, Y. H., Ng, S. T. (2015). A social life cycle assessment model for building construction in Hong Kong. International Journal of Life Cycle Assessment, 20(8),1166–1180.
14.
go back to reference Karatas, A., & El-Rayes, K. (2015). Optimizing tradeoffs among housing sustainability objectives. Automation in Construction, 53, 83–94.CrossRef Karatas, A., & El-Rayes, K. (2015). Optimizing tradeoffs among housing sustainability objectives. Automation in Construction, 53, 83–94.CrossRef
15.
go back to reference Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58–68.CrossRef Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58–68.CrossRef
16.
go back to reference Kucukvar, M., Noori, M., Egilmez, G., & Tatari, O. (2014). Stochastic decision modeling for sustainable pavement designs. The international journal of Life Cycle Assessment, 19(6), 1185–1199.CrossRef Kucukvar, M., Noori, M., Egilmez, G., & Tatari, O. (2014). Stochastic decision modeling for sustainable pavement designs. The international journal of Life Cycle Assessment, 19(6), 1185–1199.CrossRef
17.
go back to reference Wu, M. H., Ng, T. S., & Skitmore, M. R. (2016). Sustainable building envelope design by considering energy cost and occupant satisfaction. Energy for Sustainable Development, 31, 118–129.CrossRef Wu, M. H., Ng, T. S., & Skitmore, M. R. (2016). Sustainable building envelope design by considering energy cost and occupant satisfaction. Energy for Sustainable Development, 31, 118–129.CrossRef
18.
go back to reference Hosseinijou, S. A., Mansour, S., Shirazi, M. A.(2014). Social life cycle assessment for material selection: A case study of building materials. International Journal of Life Cycle Assessment, 19(3), 620–645. Hosseinijou, S. A., Mansour, S., Shirazi, M. A.(2014). Social life cycle assessment for material selection: A case study of building materials. International Journal of Life Cycle Assessment, 19(3), 620–645.
19.
go back to reference Balasbaneh, A. T., Marsono, A. K. B., & Khaleghi, S. J. (2018). Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. Journal of Building Engineering, 20, 235–247.CrossRef Balasbaneh, A. T., Marsono, A. K. B., & Khaleghi, S. J. (2018). Sustainability choice of different hybrid timber structure for low medium cost single-story residential building: Environmental, economic and social assessment. Journal of Building Engineering, 20, 235–247.CrossRef
20.
go back to reference Flynn, K. M., & Traver, R. G. (2013). Green infrastructure life cycle assessment: A bio-infiltration case study. Ecological Engineering, 55, 9–22.CrossRef Flynn, K. M., & Traver, R. G. (2013). Green infrastructure life cycle assessment: A bio-infiltration case study. Ecological Engineering, 55, 9–22.CrossRef
21.
go back to reference Kalutara, P., Zhang, G., Setunge, S., & Wakefield, R. (2017). Factors that influence Australian community buildings’ sustainable management. Engineering, Construction and Architectural Management, 24(1), 94–117. Kalutara, P., Zhang, G., Setunge, S., & Wakefield, R. (2017). Factors that influence Australian community buildings’ sustainable management. Engineering, Construction and Architectural Management, 24(1), 94–117.
22.
go back to reference Fraile-Garcia, E., Ferreiro-Cabello, J., Martinez-Camara, E., & Jimenez-Macias, E. (2015). Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environmental Impact Assessment Review, 55, 144–155.CrossRef Fraile-Garcia, E., Ferreiro-Cabello, J., Martinez-Camara, E., & Jimenez-Macias, E. (2015). Adaptation of methodology to select structural alternatives of one-way slab in residential building to the guidelines of the European Committee for Standardization (CEN/TC 350). Environmental Impact Assessment Review, 55, 144–155.CrossRef
23.
go back to reference Neto, J. V., & De Farias Filho, J. R. (2013). Sustainability in the civil construction industry: An exploratory study of life cycle analysis methods. International Journal of Environmental Technology and Management, 16(5–6), 420–436. Neto, J. V., & De Farias Filho, J. R. (2013). Sustainability in the civil construction industry: An exploratory study of life cycle analysis methods. International Journal of Environmental Technology and Management, 16(5–6), 420–436.
24.
go back to reference Joglekar, S. N., Kharkar, R. A., Mandavgane, S. A., & Kulkarni, B. D. (2018). Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks. Sustainable Cities and Society, 37, 396–406.CrossRef Joglekar, S. N., Kharkar, R. A., Mandavgane, S. A., & Kulkarni, B. D. (2018). Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks. Sustainable Cities and Society, 37, 396–406.CrossRef
25.
go back to reference Saleem, M., Chhipi-Shrestha, G., Andrade, T. B., Dyck, R., Ruparathna, R., Hewage, K., & Sadiq, R. (2018). Life cycle thinking-based selection of building facades Journal of Architectural Engineering, 24(4), 04018029. Saleem, M., Chhipi-Shrestha, G., Andrade, T. B., Dyck, R., Ruparathna, R., Hewage, K., & Sadiq, R. (2018). Life cycle thinking-based selection of building facades Journal of Architectural Engineering, 24(4), 04018029.
26.
go back to reference International Organization for Standardization. (2006). Environmental management: Life cycle assessment; principles and framework (No. 2006). ISO. International Organization for Standardization. (2006). Environmental management: Life cycle assessment; principles and framework (No. 2006). ISO.
27.
go back to reference Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50–63.CrossRef Navarro, I. J., Yepes, V., & Martí, J. V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72, 50–63.CrossRef
28.
go back to reference Mohaddes Khorassani, S., Ferrari, A. M., Pini, M., Settembre Blundo, D., García Muiña, F. E., García, J. F. (2019). Environmental and social impact assessment of cultural heritage restoration and its application to the Uncastillo Fortress. International Journal of Life Cycle Assessment, 24(7), 1297–1318. Mohaddes Khorassani, S., Ferrari, A. M., Pini, M., Settembre Blundo, D., García Muiña, F. E., García, J. F. (2019). Environmental and social impact assessment of cultural heritage restoration and its application to the Uncastillo Fortress. International Journal of Life Cycle Assessment, 24(7), 1297–1318.
29.
go back to reference Hossain, M. U., Poon, C. S., Dong, Y. H., Lo, I. M. C., & Cheng, J. C. P. (2018). Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. International Journal of Life Cycle Assessment, 23(8), 1654–1674.CrossRef Hossain, M. U., Poon, C. S., Dong, Y. H., Lo, I. M. C., & Cheng, J. C. P. (2018). Development of social sustainability assessment method and a comparative case study on assessing recycled construction materials. International Journal of Life Cycle Assessment, 23(8), 1654–1674.CrossRef
30.
go back to reference Dong, Y. H., & Ng, S. T. (2016). A modeling framework to evaluate sustainability of building construction based on LCSA. International Journal of Life Cycle Assessment, 21(4), 555–568. Dong, Y. H., & Ng, S. T. (2016). A modeling framework to evaluate sustainability of building construction based on LCSA. International Journal of Life Cycle Assessment, 21(4), 555–568.
31.
go back to reference Ostermeyer, Y., Wallbaum, H., & Reuter, F. (2013). Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. International Journal of Life Cycle Assessment, 18(9), 1762–1779. Ostermeyer, Y., Wallbaum, H., & Reuter, F. (2013). Multidimensional Pareto optimization as an approach for site-specific building refurbishment solutions applicable for life cycle sustainability assessment. International Journal of Life Cycle Assessment, 18(9), 1762–1779.
32.
go back to reference Hu, M., Kleijn, R., Bozhilova-Kisheva, K. P., & Di Maio, F. (2013). An approach to LCSA: The case of concrete recycling. International Journal of Life Cycle Assessment, 18(9), 1793–1803. Hu, M., Kleijn, R., Bozhilova-Kisheva, K. P., & Di Maio, F. (2013). An approach to LCSA: The case of concrete recycling. International Journal of Life Cycle Assessment, 18(9), 1793–1803.
33.
go back to reference Zheng, X., Easa, S. M., Yang, Z., Ji, T., & Jiang, Z. (2019). Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, 213, 659–672.CrossRef Zheng, X., Easa, S. M., Yang, Z., Ji, T., & Jiang, Z. (2019). Life-cycle sustainability assessment of pavement maintenance alternatives: Methodology and case study. Journal of Cleaner Production, 213, 659–672.CrossRef
34.
go back to reference Wang, J., Wang, Y., Sun, Y., Tingley, D. D., & Zhang, Y. (2017). Life cycle sustainability assessment of fly ash concrete structures. Renewable and Sustainable Energy Reviews, 80, 1162–1174.CrossRef Wang, J., Wang, Y., Sun, Y., Tingley, D. D., & Zhang, Y. (2017). Life cycle sustainability assessment of fly ash concrete structures. Renewable and Sustainable Energy Reviews, 80, 1162–1174.CrossRef
35.
go back to reference Kono, J., Ostermeyer, Y., & Wallbaum, H. (2018). Trade-off between the social and environmental performance of green concrete: The case of 6 countries. Sustainability, 10(7), 2309.CrossRef Kono, J., Ostermeyer, Y., & Wallbaum, H. (2018). Trade-off between the social and environmental performance of green concrete: The case of 6 countries. Sustainability, 10(7), 2309.CrossRef
36.
go back to reference Liu, S., & Qian, S. (2019). Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods. Sustainable Development, 27(5), 860–872. Liu, S., & Qian, S. (2019). Towards sustainability-oriented decision making: Model development and its validation via a comparative case study on building construction methods. Sustainable Development, 27(5), 860–872.
37.
go back to reference Gencturk, B., Hossain, K., & Lahourpour, S. (2016). Life cycle sustainability assessment of RC buildings in seismic regions. Engineering Structures, 110, 347–362.CrossRef Gencturk, B., Hossain, K., & Lahourpour, S. (2016). Life cycle sustainability assessment of RC buildings in seismic regions. Engineering Structures, 110, 347–362.CrossRef
38.
go back to reference AENOR for Standardization. (2015). UNE-EN 16309:Sustainability of construction works—Assessment of social performance of buildings—Calculation methodology. AENOR for Standardization. (2015). UNE-EN 16309:Sustainability of construction works—Assessment of social performance of buildings—Calculation methodology.
39.
go back to reference Chang, Y., Ries, R. J., & Wang, Y. (2011). The quantification of the embodied impacts of construction projects on energy, environment, and society based on I-O LCA. Energy Policy, 39(10), 6321–6330. Chang, Y., Ries, R. J., & Wang, Y. (2011). The quantification of the embodied impacts of construction projects on energy, environment, and society based on I-O LCA. Energy Policy, 39(10), 6321–6330.
40.
go back to reference Papong, S., Itsubo, N., Malakul, P., & Shukuya, M. (2015). Development of the social inventory database in Thailand using input–output analysis. Sustainability, 7(6), 7684–7713.CrossRef Papong, S., Itsubo, N., Malakul, P., & Shukuya, M. (2015). Development of the social inventory database in Thailand using input–output analysis. Sustainability, 7(6), 7684–7713.CrossRef
41.
go back to reference Kucukvar, M., & Tatari, O. (2013). Towards a triple bottom-line sustainability assessment of the U.S. construction industry. International Journal of Life Cycle Assessment, 18(5), 958–972. Kucukvar, M., & Tatari, O. (2013). Towards a triple bottom-line sustainability assessment of the U.S. construction industry. International Journal of Life Cycle Assessment, 18(5), 958–972.
42.
go back to reference Shi, X., Mukhopadhyay, A., Zollinger, D., & Grasley, Z. (2019). Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate. Journal of Cleaner Production, 225, 414–425.CrossRef Shi, X., Mukhopadhyay, A., Zollinger, D., & Grasley, Z. (2019). Economic input-output life cycle assessment of concrete pavement containing recycled concrete aggregate. Journal of Cleaner Production, 225, 414–425.CrossRef
43.
go back to reference Choi, K., Lee, H. W., Mao, Z., Lavy, S., & Ryoo, B. Y. (2016). Environmental, economic, and social implications of highway concrete rehabilitation alternatives. Journal of Construction Engineering and Management, 142(2). Choi, K., Lee, H. W., Mao, Z., Lavy, S., & Ryoo, B. Y. (2016). Environmental, economic, and social implications of highway concrete rehabilitation alternatives. Journal of Construction Engineering and Management, 142(2).
44.
go back to reference Onat, N. C., Kucukvar, M., & Tatari, O. (2014). Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. International Journal of Life Cycle Assessment, 19(8), 1488–1505. Onat, N. C., Kucukvar, M., & Tatari, O. (2014). Integrating triple bottom line input-output analysis into life cycle sustainability assessment framework: The case for US buildings. International Journal of Life Cycle Assessment, 19(8), 1488–1505.
45.
go back to reference Leontief, W. (1986). Input-output economics. Oxford University Press. Leontief, W. (1986). Input-output economics. Oxford University Press.
46.
go back to reference Ghimire, S. R., & Johnston, J. M. (2017). A modified eco-efficiency framework and methodology for advancing the state of practice of sustainability analysis as applied to green infrastructure. Integrated Environmental Assessment and Management, 13(5), 821–831. Ghimire, S. R., & Johnston, J. M. (2017). A modified eco-efficiency framework and methodology for advancing the state of practice of sustainability analysis as applied to green infrastructure. Integrated Environmental Assessment and Management, 13(5), 821–831.
47.
go back to reference Yeheyis, M., Hewage, K., Alam, M. S., Eskicioglu, C., & Sadiq, R. (2013). An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technologies and Environmental Policy, 15(1), 81–91. Yeheyis, M., Hewage, K., Alam, M. S., Eskicioglu, C., & Sadiq, R. (2013). An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability. Clean Technologies and Environmental Policy, 15(1), 81–91.
48.
go back to reference Wang, Z., Jin, W., Dong, Y., & Frangopol, D. M. (2018). Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives. Engineering Structures, 157, 119–131.CrossRef Wang, Z., Jin, W., Dong, Y., & Frangopol, D. M. (2018). Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives. Engineering Structures, 157, 119–131.CrossRef
49.
go back to reference Castro, M. D. F., Mateus, R., & Bragança, L. (2017). Development of a healthcare building sustainability assessment method—Proposed structure and system of weights for the Portuguese context. Journal of Cleaner Production, 148, 555–570.CrossRef Castro, M. D. F., Mateus, R., & Bragança, L. (2017). Development of a healthcare building sustainability assessment method—Proposed structure and system of weights for the Portuguese context. Journal of Cleaner Production, 148, 555–570.CrossRef
50.
go back to reference Malmgren, L., Elfborg, S., & Mjörnell, K. (2016). Development of a decision support tool for sustainable renovation—A case study. Structural Survey, 34(1), 3–11. Malmgren, L., Elfborg, S., & Mjörnell, K. (2016). Development of a decision support tool for sustainable renovation—A case study. Structural Survey, 34(1), 3–11.
51.
go back to reference Matthews, N. E., Stamford, L., & Shapira, P. (2019). Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. Sustainable Production and Consumption, 20, 58–73.CrossRef Matthews, N. E., Stamford, L., & Shapira, P. (2019). Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. Sustainable Production and Consumption, 20, 58–73.CrossRef
52.
go back to reference Margorínová, M., Trojanová, M., Decký, M., & Remišová, E. (2018). Noise costs from road transport. Civil and Environmental Engineering, 14(1), 12–20. Margorínová, M., Trojanová, M., Decký, M., & Remišová, E. (2018). Noise costs from road transport. Civil and Environmental Engineering, 14(1), 12–20.
53.
go back to reference Amini, A. A., Mashayekhi, M., Ziari, H., & Nobakht, S. (2012). Life cycle cost comparison of highways with perpetual and conventional pavements. International Journal of Pavement Engineering, 13(6), 553–568. Amini, A. A., Mashayekhi, M., Ziari, H., & Nobakht, S. (2012). Life cycle cost comparison of highways with perpetual and conventional pavements. International Journal of Pavement Engineering, 13(6), 553–568.
54.
go back to reference Babashamsi, P., Md Yusoff, N. I., Ceylan, H., Md Nor, N. G., Salarzadeh Jenatabadi, H. (2016). Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, 9(4), 241–254. Babashamsi, P., Md Yusoff, N. I., Ceylan, H., Md Nor, N. G., Salarzadeh Jenatabadi, H. (2016). Evaluation of pavement life cycle cost analysis: Review and analysis. International Journal of Pavement Research and Technology, 9(4), 241–254.
55.
go back to reference Pons, O., De la Fuente, A., & Aguado, A. (2016). The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability, 8(5), 460.CrossRef Pons, O., De la Fuente, A., & Aguado, A. (2016). The use of MIVES as a sustainability assessment MCDM method for architecture and civil engineering applications. Sustainability, 8(5), 460.CrossRef
56.
go back to reference Lounis, Z., & McAllister, T. P. (2016). Risk-based decision making for sustainable and resilient infrastructure systems. Journal of Structural Engineering, 142(9), F4016005.CrossRef Lounis, Z., & McAllister, T. P. (2016). Risk-based decision making for sustainable and resilient infrastructure systems. Journal of Structural Engineering, 142(9), F4016005.CrossRef
57.
go back to reference Bragança, L., Mateus, R., & Koukkari, H. (2010). Building sustainability assessment. Sustainability, 2(7), 2010–2023. Bragança, L., Mateus, R., & Koukkari, H. (2010). Building sustainability assessment. Sustainability, 2(7), 2010–2023.
58.
go back to reference Lounis, Z., & Daigle, L. (2013). Multi-objective and probabilistic decision-making approaches to sustainable design and management of highway bridge decks. Structure and Infrastructure Engineering, 9(4), 364–383. Lounis, Z., & Daigle, L. (2013). Multi-objective and probabilistic decision-making approaches to sustainable design and management of highway bridge decks. Structure and Infrastructure Engineering, 9(4), 364–383.
59.
go back to reference Ekener-Petersen, E., & Finnveden, G. (2013). Potential hotspots identified by social LCA—part 1: a case study of a laptop computer. The International Journal of Life Cycle Assessment, 18(1), 127–143. Ekener-Petersen, E., & Finnveden, G. (2013). Potential hotspots identified by social LCA—part 1: a case study of a laptop computer. The International Journal of Life Cycle Assessment, 18(1), 127–143.
Metadata
Title
Review of the Quantitative Analysis Methods for Social Life Cycle Assessment in Construction
Authors
X. Y. Jiang
X. R. Yao
S. N. Lyu
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-3587-8_86