Skip to main content
Top

04-04-2024 | Research

Rheological, thermal, and mechanical properties of poly(butylene succinate) (PBS)/poly(L-lactide) (PLA) fiber biodegradable green composites

Authors: Junhao Li, Xiuli Wang, Yi Li, Hongliang Hu, Xiwen Liang

Published in: Colloid and Polymer Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Biodegradable green composites of poly(butylene succinate) (PBS) and poly(L-lactide) (PLA) fibers were initially melt-blended aiming to obtain balanced comprehensive properties. According to the morphological observations, the PLA fibers were uniformly embedded in the PBS matrix. Rheology measurements suggested that the incorporation of PLA fibers improved the viscoelasticity of PBS melt. The percolation network of PLA fibers was formed at content of 20 wt%. The presence of PLA fibers inhibited the crystallization and reduced the isothermal crystallization rate of PBS in the composites. Moreover, the reinforcing effect of PLA fibers on the PBS matrix was found to be very significant. The storage modulus and tensile modulus of the composite with 30 wt% PLA fibers were 74% and 94% higher than those of neat PBS, respectively. PBS/PLA fiber composites prepared by simple melt blending method displayed the combination of enhanced melt strength and modulus, while maintaining the biodegradability of PBS matrix, which is of great potential for the wider practical application of environmentally friendly polymers.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021CrossRef Satyanarayana KG, Arizaga GGC, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021CrossRef
2.
go back to reference Schmitz L, Harada J, Ribeiro WB, Rosa DS, Brandalise RN (2023) Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment. Colloid Polym Sci 301:1405–1419CrossRef Schmitz L, Harada J, Ribeiro WB, Rosa DS, Brandalise RN (2023) Toughening of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT): a morphological, thermal, mechanical, and degradation evaluation in a simulated marine environment. Colloid Polym Sci 301:1405–1419CrossRef
3.
go back to reference Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J Pr Eng Man-GT 3:289–296 Yun IS, Hwang SW, Shim JK, Seo KH (2016) A study on the thermal and mechanical properties of poly (butylene succinate)/thermoplastic starch binary blends. Int J Pr Eng Man-GT 3:289–296
4.
go back to reference Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380CrossRefPubMed Shi K, Liu Y, Hu X, Su T, Li P, Wang Z (2018) Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int J Biol Macromol 114:373–380CrossRefPubMed
5.
go back to reference Wang Y, Meng F, Zhu J, Ba Z, Jiang D, Wen X, Tang T (2023) Synergistic effect of carbon nanotube on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate composites. Colloid Polym Sci 301:1529–1537CrossRef Wang Y, Meng F, Zhu J, Ba Z, Jiang D, Wen X, Tang T (2023) Synergistic effect of carbon nanotube on improving thermal stability, flame retardancy, and electrical conductivity of poly(butylene succinate)/piperazine pyrophosphate composites. Colloid Polym Sci 301:1529–1537CrossRef
6.
go back to reference Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M (2013) Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 5:128–141CrossRef Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M (2013) Biodegradable poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymers 5:128–141CrossRef
7.
go back to reference Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326CrossRef Huang Z, Qian L, Yin Q, Yu N, Liu T, Tian D (2018) Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polym Test 66:319–326CrossRef
8.
go back to reference Feng Y, Shen H, Qu J, Liu B, He H, Han L (2011) Preparation and properties of PBS/sisal-fiber composites. Polym Eng Sci 51:474–481CrossRef Feng Y, Shen H, Qu J, Liu B, He H, Han L (2011) Preparation and properties of PBS/sisal-fiber composites. Polym Eng Sci 51:474–481CrossRef
9.
go back to reference Wu CS, Liao HT, Jhang JJ (2013) Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterisation and assessment of mechanical and thermal properties. Polym Bull 70:3443–3462CrossRef Wu CS, Liao HT, Jhang JJ (2013) Palm fibre-reinforced hybrid composites of poly(butylene succinate): characterisation and assessment of mechanical and thermal properties. Polym Bull 70:3443–3462CrossRef
10.
go back to reference Su SK, Wu CS (2011) Polyester biocomposites from recycled natural fibers: characterization and biodegradability. J Appl Polym Sci 119:1211–1219CrossRef Su SK, Wu CS (2011) Polyester biocomposites from recycled natural fibers: characterization and biodegradability. J Appl Polym Sci 119:1211–1219CrossRef
11.
go back to reference Xu X, Zhang M, Qiang Q, Song J, He W (2015) Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. J Compos Mater 50:1–9 Xu X, Zhang M, Qiang Q, Song J, He W (2015) Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. J Compos Mater 50:1–9
12.
go back to reference Liang Z, Pan P, Bo Z, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567CrossRef Liang Z, Pan P, Bo Z, Dong T, Inoue Y (2010) Mechanical and thermal properties of poly(butylene succinate)/plant fiber biodegradable composite. J Appl Polym Sci 115:3559–3567CrossRef
13.
go back to reference Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q (2013) Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate), Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). Rsc Adv 3:26418–26426CrossRef Zhou M, Yan J, Li Y, Geng C, He C, Wang K, Fu Q (2013) Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate), Interfacial strength and mechanical properties of biocomposites based on ramie fibers and poly(butylene succinate). Rsc Adv 3:26418–26426CrossRef
14.
go back to reference Fan D, Chang P, Lin N, Yu J, Huang J (2011) Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran Polym J 20:3–14 Fan D, Chang P, Lin N, Yu J, Huang J (2011) Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran Polym J 20:3–14
15.
go back to reference Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B-Eng 42:1648–1656CrossRef Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos Part B-Eng 42:1648–1656CrossRef
16.
go back to reference Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409CrossRef Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86:401–409CrossRef
17.
go back to reference Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26CrossRef Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26CrossRef
18.
go back to reference Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B-Eng 43:2883–2892CrossRef Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B-Eng 43:2883–2892CrossRef
19.
go back to reference Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Compos Part A-Appl S 37:80–91CrossRef Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposite with biobased coupling agent. Compos Part A-Appl S 37:80–91CrossRef
20.
go back to reference Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly (butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94CrossRef Liu L, Yu J, Cheng L, Yang X (2009) Biodegradability of poly (butylene succinate) (PBS) composite reinforced with jute fibre. Polym Degrad Stab 94:90–94CrossRef
21.
go back to reference Chen L, Hu K, Sun S, Jiang H, Huang D, Zhang K, Pan L, Li Y (2018) Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J Polym Sci 36:1342–1352CrossRef Chen L, Hu K, Sun S, Jiang H, Huang D, Zhang K, Pan L, Li Y (2018) Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J Polym Sci 36:1342–1352CrossRef
22.
go back to reference Kahraman Y, Özdemir B, Gümüş BE, Nofar M (2023) Morphological, rheological, and mechanical properties of PLA/TPU/nanoclay blends compatibilized with epoxy-based Joncryl chain extender. Colloid Polym Sci 301:51–62CrossRef Kahraman Y, Özdemir B, Gümüş BE, Nofar M (2023) Morphological, rheological, and mechanical properties of PLA/TPU/nanoclay blends compatibilized with epoxy-based Joncryl chain extender. Colloid Polym Sci 301:51–62CrossRef
23.
go back to reference Lee SH, Kim IY, Song WS (2014) Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol Res 22:657–663CrossRef Lee SH, Kim IY, Song WS (2014) Biodegradation of polylactic acid (PLA) fibers using different enzymes. Macromol Res 22:657–663CrossRef
24.
go back to reference Mezger TG (2020) The rheology handbook: for users of rotational and oscillatory rheometers. 5th edn. Vincentz Network, Hannover Germany, pp199 Mezger TG (2020) The rheology handbook: for users of rotational and oscillatory rheometers. 5th edn. Vincentz Network, Hannover Germany, pp199
25.
go back to reference Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRef Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRef
26.
go back to reference Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef Wu D, Wu L, Wu L, Xu B, Zhang Y, Zhang M (2007) Nonisothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci B Polym Phys 45:1100–1113CrossRef
27.
go back to reference Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics J Chem Phys 9:341–351 Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics J Chem Phys 9:341–351
28.
go back to reference Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67CrossRef Wang G, Guo B, Xu J, Li R (2011) Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. J Appl Polym Sci 121:59–67CrossRef
29.
go back to reference Li J, Qiu Z (2019) Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohyd Polym 205:211–216CrossRef Li J, Qiu Z (2019) Effect of low loadings of cellulose nanocrystals on the significantly enhanced crystallization of biodegradable poly(butylene succinate-co-butylene adipate). Carbohyd Polym 205:211–216CrossRef
30.
go back to reference Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef Avrami M (1940) Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef
31.
go back to reference Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184CrossRef Avrami M (1941) Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys 9:177–184CrossRef
32.
go back to reference Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677CrossRef
33.
go back to reference Tan B, Qu J, Liu L, Feng Y, Hu S, Yin X (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525:141–149CrossRef Tan B, Qu J, Liu L, Feng Y, Hu S, Yin X (2011) Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta 525:141–149CrossRef
34.
go back to reference Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Composite 36:1335–1345CrossRef Liang J, Ding C, Wei Z, Sang L, Song P, Chen G, Chang Y, Xu J, Zhang W (2015) Mechanical, morphology, and thermal properties of carbon fiber reinforced poly(butylene succinate) composites. Polym Composite 36:1335–1345CrossRef
35.
go back to reference Liu X, Li C, Xiao Y, Zhang D, Zeng W (2006) Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. J Appl Polym Sci 102:2493–2499CrossRef Liu X, Li C, Xiao Y, Zhang D, Zeng W (2006) Non-isothermal crystallization kinetics and melting behaviors of poly(butylene succinate) and its copolyester modified with trimellitic imide units. J Appl Polym Sci 102:2493–2499CrossRef
36.
go back to reference Rohindra DR, Kuboyama K, Ougizawa T (2010) High-pressure analysis of the multiple melting endotherms of poly(ethylene succinate) and poly(butylene succinate). J Macromol Sci B 49:470–478CrossRef Rohindra DR, Kuboyama K, Ougizawa T (2010) High-pressure analysis of the multiple melting endotherms of poly(ethylene succinate) and poly(butylene succinate). J Macromol Sci B 49:470–478CrossRef
37.
go back to reference Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43:3163–3170CrossRef Wang X, Zhou J, Li L (2007) Multiple melting behavior of poly(butylene succinate). Eur Polym J 43:3163–3170CrossRef
38.
go back to reference Kajornprai T, Sirisinha K (2021) Effect of thermal annealing on crystal evolution and multiple melting behaviors of molded poly(L-lactic acid) and poly(butylene succinate) blends upon heating investigated by TMDSC. J Therm Anal Calorim 146:2471–2480CrossRef Kajornprai T, Sirisinha K (2021) Effect of thermal annealing on crystal evolution and multiple melting behaviors of molded poly(L-lactic acid) and poly(butylene succinate) blends upon heating investigated by TMDSC. J Therm Anal Calorim 146:2471–2480CrossRef
39.
go back to reference Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824CrossRef Huda MS, Drzal LT, Mohanty AK, Misra M (2006) Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly(lactic acid) (PLA) composites: a comparative study. Compos Sci Technol 66:1813–1824CrossRef
40.
go back to reference Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int J Biol Macromol 29:83–89CrossRefPubMed Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int J Biol Macromol 29:83–89CrossRefPubMed
41.
go back to reference Li C, Jia S, Liu C, Tian H, Han L, Wang D, Zhang H (2023) Green composite from carbon dioxide-derived poly (propylene carbonate) and biodegradable poly (glycolic-co-lactic acid) fiber. Colloid Polym Sci 301:319–329CrossRef Li C, Jia S, Liu C, Tian H, Han L, Wang D, Zhang H (2023) Green composite from carbon dioxide-derived poly (propylene carbonate) and biodegradable poly (glycolic-co-lactic acid) fiber. Colloid Polym Sci 301:319–329CrossRef
Metadata
Title
Rheological, thermal, and mechanical properties of poly(butylene succinate) (PBS)/poly(L-lactide) (PLA) fiber biodegradable green composites
Authors
Junhao Li
Xiuli Wang
Yi Li
Hongliang Hu
Xiwen Liang
Publication date
04-04-2024
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-024-05243-0

Premium Partners