Skip to main content
Top
Published in: Intelligent Service Robotics 1/2021

15-01-2021 | Original Research Paper

Robotic grasp manipulation using evolutionary computing and deep reinforcement learning

Authors: Priya Shukla, Hitesh Kumar, G C Nandi

Published in: Intelligent Service Robotics | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intelligent object manipulation for grasping is a challenging problem for robots. Unlike robots, humans almost immediately know how to manipulate objects for grasping due to learning over the years. In this paper, we have developed learning-based pose estimation by decomposing the problem into both position and orientation learning. More specifically, for grasp position estimation, we explore three different methods such as genetic algorithm (GA)-based optimization method to minimize error between calculated image points and predicted end-effector (EE) position, a regression-based method (RM) where collected data points of robot EE and image points have been regressed with a linear model, a pseudoinverse (PI) model which has been formulated in the form of a mapping matrix with robot EE position and image points for several observations. Further for grasp orientation learning, we develop a deep reinforcement learning (DRL) model which we name as grasp deep Q-network (GDQN) and benchmarked our results with Modified VGG16 (MVGG16). Rigorous experimentation shows that due to inherent capability of producing very high-quality solutions for optimization problems and search problems, GA-based predictor performs much better than the other two models for position estimation. For orientation, learning results indicate that off policy learning through GDQN outperforms MVGG16, since GDQN architecture is specially made suitable for the reinforcement learning. Experimentation based on our proposed architectures and algorithms shows that the robot is capable of grasping nearly all rigid body objects having regular shapes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Depierre A, Dellandrea E, Chen L (2018) Jacquard: a largescale dataset for robotic grasp detection. In: Proceedings of the 2018 IEEE/RSJ international conference on Intelligent Robots and Systems (IROS), pp 3511–3516 (2018) Depierre A, Dellandrea E, Chen L (2018) Jacquard: a largescale dataset for robotic grasp detection. In: Proceedings of the 2018 IEEE/RSJ international conference on Intelligent Robots and Systems (IROS), pp 3511–3516 (2018)
3.
go back to reference Fu J, Lin Z, Liu M, Leonard N, Feng J, Chua TS (2016) Deep q-networks for accelerating the training of deep neural networks Fu J, Lin Z, Liu M, Leonard N, Feng J, Chua TS (2016) Deep q-networks for accelerating the training of deep neural networks
4.
go back to reference Goldberg DE (1994) Genetic algorithms in search, optimization and machine learning, 2nd edn. Addison-Wesley, Boston Goldberg DE (1994) Genetic algorithms in search, optimization and machine learning, 2nd edn. Addison-Wesley, Boston
5.
go back to reference Huber PJ (2011) Robust statistics. Springer, Berlin, pp 1248–1251 Huber PJ (2011) Robust statistics. Springer, Berlin, pp 1248–1251
8.
go back to reference Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, Levine S (2018) Qt-opt: scalable deep reinforcement learning for vision-based robotic manipulation (2018). arXiv:1806.10293 Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Quillen D, Holly E, Kalakrishnan M, Vanhoucke V, Levine S (2018) Qt-opt: scalable deep reinforcement learning for vision-based robotic manipulation (2018). arXiv:​1806.​10293
10.
go back to reference Kragic D, Christensen HAF (2002) Survey on visual servoing for manipulation. Comput Vis Act Percept Lab Fiskartorpsv 15:2002 Kragic D, Christensen HAF (2002) Survey on visual servoing for manipulation. Comput Vis Act Percept Lab Fiskartorpsv 15:2002
11.
go back to reference Langlois J, Mouchère H, Normand N, Viard-Gaudin C (2018) 3d orientation estimation of industrial parts from 2d images using neural networks. In: ICPRAM Langlois J, Mouchère H, Normand N, Viard-Gaudin C (2018) 3d orientation estimation of industrial parts from 2d images using neural networks. In: ICPRAM
14.
go back to reference Li M, Hang K, Kragic D, Billard A (2016) Dexterous grasping under shape uncertainty. Robot Auton Syst 75:352–364CrossRef Li M, Hang K, Kragic D, Billard A (2016) Dexterous grasping under shape uncertainty. Robot Auton Syst 75:352–364CrossRef
15.
go back to reference Lin T, Maire M, Belongie SJ, Bourdev LD, Girshick RB, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. CoRR arXiv:1405.0312 Lin T, Maire M, Belongie SJ, Bourdev LD, Girshick RB, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. CoRR arXiv:​1405.​0312
16.
go back to reference Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, Ojea JA, Goldberg K (2017) Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR arXiv:1703.09312 Mahler J, Liang J, Niyaz S, Laskey M, Doan R, Liu X, Ojea JA, Goldberg K (2017) Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. CoRR arXiv:​1703.​09312
17.
go back to reference Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, BerlinCrossRef Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, BerlinCrossRef
18.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller MA (2013) Playing atari with deep reinforcement learning. CoRR arXiv:1312.5602 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Riedmiller MA (2013) Playing atari with deep reinforcement learning. CoRR arXiv:​1312.​5602
19.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M, Graves A, Riedmiller M, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–33. https://doi.org/10.1038/nature14236CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M, Graves A, Riedmiller M, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518:529–33. https://​doi.​org/​10.​1038/​nature14236CrossRef
21.
go back to reference Peters J, Lee D, Kober J, Nguyen-Tuong D, Bagnell J, Schaal S (2017) Robot learning, 2nd edn., chap. 15. Springer International Publishing, pp 357–394 Peters J, Lee D, Kober J, Nguyen-Tuong D, Bagnell J, Schaal S (2017) Robot learning, 2nd edn., chap. 15. Springer International Publishing, pp 357–394
22.
24.
go back to reference Ren S, He K, Girshick RB, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. CoRR arXiv:1506.01497 Ren S, He K, Girshick RB, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. CoRR arXiv:​1506.​01497
25.
go back to reference Ritter H, Haschke R (2015) Hands, dexterity, and the brain. In: PhD Cheng G (ed) Humanoid robotics and neuroscience: science, engineering and society, 3. CRC Press, Boca Raton Ritter H, Haschke R (2015) Hands, dexterity, and the brain. In: PhD Cheng G (ed) Humanoid robotics and neuroscience: science, engineering and society, 3. CRC Press, Boca Raton
26.
go back to reference Sahbani A, El-Khoury S, Bidaud P (2012) An overview of 3d object grasp synthesis algorithms. Robot Auton Syst 60(3):326–336CrossRef Sahbani A, El-Khoury S, Bidaud P (2012) An overview of 3d object grasp synthesis algorithms. Robot Auton Syst 60(3):326–336CrossRef
28.
go back to reference Shukla P, Nandi GC (2019) Robotized grasp: grasp manipulation using evolutionary computing. In: Proceedings of 2019 international conference on electrical, electronics and computer engineering (UPCON) (2019). DOI 978-1-7281-3455-0/19/\$31.002019IEEE Shukla P, Nandi GC (2019) Robotized grasp: grasp manipulation using evolutionary computing. In: Proceedings of 2019 international conference on electrical, electronics and computer engineering (UPCON) (2019). DOI 978-1-7281-3455-0/19/\$31.002019IEEE
29.
go back to reference Tremblay J, To T, Sundaralingam B, Xiang Y, Fox D, Birchfield S (2018) Deep object pose estimation for semantic robotic grasping of household objects. CoRR arXiv:1809.10790 Tremblay J, To T, Sundaralingam B, Xiang Y, Fox D, Birchfield S (2018) Deep object pose estimation for semantic robotic grasping of household objects. CoRR arXiv:​1809.​10790
30.
go back to reference Viereck U, ten Pas A, Saenko K, Jr, RP (2017) Learning a visuomotor controller for real world robotic grasping using easily simulated depth images. CoRR arXiv:1706.04652 Viereck U, ten Pas A, Saenko K, Jr, RP (2017) Learning a visuomotor controller for real world robotic grasping using easily simulated depth images. CoRR arXiv:​1706.​04652
31.
go back to reference Zhu H, Gupta A, Rajeswaran A, Levine S, Kumar V (2018) Dexterous manipulation with deep reinforcement learning: efficient, general, and low-cost. CoRR arXiv:1810.06045 Zhu H, Gupta A, Rajeswaran A, Levine S, Kumar V (2018) Dexterous manipulation with deep reinforcement learning: efficient, general, and low-cost. CoRR arXiv:​1810.​06045
Metadata
Title
Robotic grasp manipulation using evolutionary computing and deep reinforcement learning
Authors
Priya Shukla
Hitesh Kumar
G C Nandi
Publication date
15-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Intelligent Service Robotics / Issue 1/2021
Print ISSN: 1861-2776
Electronic ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-020-00342-7

Other articles of this Issue 1/2021

Intelligent Service Robotics 1/2021 Go to the issue

Editorial

Editorial