Skip to main content
Top
Published in: Journal of Electronic Materials 8/2021

01-06-2021 | Original Research Article

Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature

Authors: M. Sağlam, B. Güzeldir, A. Türüt, D. Ekinci

Published in: Journal of Electronic Materials | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to understand the current conduction mechanism in metal-semiconductor rectifier junctions, it is important to take electrical measurements depending on the sample temperature. Therefore, the current-voltage (I-V) measurements of the Au/Au-RGO/p-Si/Al structure were taken in the temperature range of 80–300 K by steps of 20 K. In the fabrication of the Au/Au-RGO/p-Si/Al structure, p-type Si was used as a base material. First, an ohmic contact was made by evaporating Al metal on the polished surface of the chemically cleaned p-Si and annealing in a nitrogen atmosphere at 580°C. Afterwards, mercaptoundecanoic acid-capped Au nanoparticles assembled on reduced graphene oxide (RGO), namely Au-RGO nanocomposite, was grown as an interfacial layer on the p-Si semiconductor substrate by the spin coating technique. The morphological and optical properties of the Au-RGO nanocomposite thin film were examined by atomic force microscopy (AFM) and Raman spectroscopy measurements. The I-V measurements of the Au/Au-RGO/p-Si/Al structure were taken depending on sample temperature and the basic electrical parameters such as ideality factor (n), barrier height (Φb) and dynamic resistance were calculated by means of thermionic emission method. It was observed that the ideality factor decreased and the barrier height increased with increasing sample temperature. The results were interpreted with the barrier inhomogeneity model and using Richardson plots.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.S. Li, Semiconductor Physical Electronics, 2nd ed., (New York: Springer, 2006).CrossRef S.S. Li, Semiconductor Physical Electronics, 2nd ed., (New York: Springer, 2006).CrossRef
2.
go back to reference S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (New York: Wiley, 1981). S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (New York: Wiley, 1981).
3.
go back to reference U.K. Mishra, and J. Singh, Semiconductor Device Physics and Design (Netherlands: Springer, 2008). U.K. Mishra, and J. Singh, Semiconductor Device Physics and Design (Netherlands: Springer, 2008).
4.
go back to reference K. Hess, Advanced Theory of Semiconductor Devices (New York: Wiley, 2000). K. Hess, Advanced Theory of Semiconductor Devices (New York: Wiley, 2000).
5.
go back to reference E.H. Rhoderick, and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., (Oxford: Clerandon, 1988). E.H. Rhoderick, and R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., (Oxford: Clerandon, 1988).
8.
go back to reference M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, and A. Astam, Curr. Appl. Phys. 10, 513 (2010).CrossRef M. Sağlam, A. Ateş, M.A. Yıldırım, B. Güzeldir, and A. Astam, Curr. Appl. Phys. 10, 513 (2010).CrossRef
9.
go back to reference A.S. Kavasoğlu, F. Yakuphanoğlu, N. Kavasoğlu, O. Pakma, Ö. Birgi, and Ş Oktik, J. Alloys Compd. 492, 421 (2010).CrossRef A.S. Kavasoğlu, F. Yakuphanoğlu, N. Kavasoğlu, O. Pakma, Ö. Birgi, and Ş Oktik, J. Alloys Compd. 492, 421 (2010).CrossRef
10.
go back to reference S. Zeyrek, M.M. Bülbül, Ş Altındal, M.C. Baykul, and H. Yüzer, Braz. J. Phys. 38, 591 (2008). S. Zeyrek, M.M. Bülbül, Ş Altındal, M.C. Baykul, and H. Yüzer, Braz. J. Phys. 38, 591 (2008).
12.
go back to reference A. Türüt, D.E. Yıldız, A. Karabulut, and İ Orak, J. Mater. Sci.: Mater. Electron. 4, 7839 (2020). A. Türüt, D.E. Yıldız, A. Karabulut, and İ Orak, J. Mater. Sci.: Mater. Electron. 4, 7839 (2020).
13.
go back to reference İ Orak, Z. Çaldiran, M. Bakir, O. Çifçi, and A. Koçyiğit, J. Electron. Mater. 49, 402 (2020).CrossRef İ Orak, Z. Çaldiran, M. Bakir, O. Çifçi, and A. Koçyiğit, J. Electron. Mater. 49, 402 (2020).CrossRef
14.
go back to reference A. Karabulut, İ Orak, M. Çağlar, and A. Türüt, Surf. Rev. Lett. 26, 1950045 (2019).CrossRef A. Karabulut, İ Orak, M. Çağlar, and A. Türüt, Surf. Rev. Lett. 26, 1950045 (2019).CrossRef
15.
go back to reference K. Ejderha, İ Orak, S. Duman, and A. Türüt, J. Electron. Mater. 47, 3502 (2018).CrossRef K. Ejderha, İ Orak, S. Duman, and A. Türüt, J. Electron. Mater. 47, 3502 (2018).CrossRef
16.
go back to reference A. Kocyigit, İ Orak, Z. Çaldıran, and A. Türüt, J. Mater. Sci.: Mater. Electron. 28, 17177 (2017). A. Kocyigit, İ Orak, Z. Çaldıran, and A. Türüt, J. Mater. Sci.: Mater. Electron. 28, 17177 (2017).
17.
go back to reference G. Turgut, S. Duman, and F.Ş Özcelik, Metall. and Mater. Trans. A. 48A, 3137 (2017).CrossRef G. Turgut, S. Duman, and F.Ş Özcelik, Metall. and Mater. Trans. A. 48A, 3137 (2017).CrossRef
18.
go back to reference A. Güzel, S. Duman, N. Yıldırım, and A. Türüt, J. Electron. Mater. 45, 2808 (2016).CrossRef A. Güzel, S. Duman, N. Yıldırım, and A. Türüt, J. Electron. Mater. 45, 2808 (2016).CrossRef
19.
go back to reference A.F. Özdemir, Z. Kotan, D.A. Aldemir, and Ş Altındal, Eur. Phys. J. Appl. Phys. 46, 20402 (2009).CrossRef A.F. Özdemir, Z. Kotan, D.A. Aldemir, and Ş Altındal, Eur. Phys. J. Appl. Phys. 46, 20402 (2009).CrossRef
20.
go back to reference G. Cebisli, S. Asubay, and Y.S. Ocak, J. Ovonic Res. 14, 405 (2018). G. Cebisli, S. Asubay, and Y.S. Ocak, J. Ovonic Res. 14, 405 (2018).
21.
22.
go back to reference D.A. Aldemir, A. Kökce, and A.F. Özdemir, Microelectron. Eng. 98, 6 (2012).CrossRef D.A. Aldemir, A. Kökce, and A.F. Özdemir, Microelectron. Eng. 98, 6 (2012).CrossRef
23.
go back to reference T. Göksu, N. Yıldırım, H. Korkut, A.F. Özdemir, A. Türüt, and A. Kökçe, Microelectron. Eng. 87, 1781 (2010).CrossRef T. Göksu, N. Yıldırım, H. Korkut, A.F. Özdemir, A. Türüt, and A. Kökçe, Microelectron. Eng. 87, 1781 (2010).CrossRef
24.
go back to reference Y.S. Ocak, C. Bozkaplan, H.S. Ahmed, A. Tombak, M.F. Genisel, and S. Asubay, Optik 142, 644 (2017).CrossRef Y.S. Ocak, C. Bozkaplan, H.S. Ahmed, A. Tombak, M.F. Genisel, and S. Asubay, Optik 142, 644 (2017).CrossRef
25.
go back to reference A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, and Ş Aydoğan, J. Colloid Interface Sci. 473, 172 (2016).CrossRef A.R. Deniz, Z. Çaldıran, Ö. Metin, K. Meral, and Ş Aydoğan, J. Colloid Interface Sci. 473, 172 (2016).CrossRef
26.
27.
go back to reference C. Çoşkun, Ş Aydoğan, and H. Efeoğlu, Semicond. Sci. Technol. 19, 242 (2004).CrossRef C. Çoşkun, Ş Aydoğan, and H. Efeoğlu, Semicond. Sci. Technol. 19, 242 (2004).CrossRef
28.
go back to reference K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş Altındal, J. Mater. Sci.: Mater. Electron. 28, 3987 (2017). K. Moraki, S. Bengi, S. Zeyrek, M.M. Bülbül, and Ş Altındal, J. Mater. Sci.: Mater. Electron. 28, 3987 (2017).
29.
30.
go back to reference S. Altındal, B. Sarı, H.I. Ünal, and N. Yavaş, J. Appl. Polym. Sci. 113, 2955 (2009).CrossRef S. Altındal, B. Sarı, H.I. Ünal, and N. Yavaş, J. Appl. Polym. Sci. 113, 2955 (2009).CrossRef
31.
go back to reference H.H. Gullu, and D.E. Yildiz, J. Mater. Sci.: Mater. Electron. 30, 19383 (2019). H.H. Gullu, and D.E. Yildiz, J. Mater. Sci.: Mater. Electron. 30, 19383 (2019).
32.
go back to reference A. Fritah, L. Dehimi, F. Pezzimenti, A. Saadoune, and B. Abay, J. Electron. Mater. 48, 3692 (2019).CrossRef A. Fritah, L. Dehimi, F. Pezzimenti, A. Saadoune, and B. Abay, J. Electron. Mater. 48, 3692 (2019).CrossRef
33.
go back to reference F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Phys. B 404, 1558 (2009).CrossRef F.E. Cimilli, M. Sağlam, H. Efeoğlu, and A. Türüt, Phys. B 404, 1558 (2009).CrossRef
35.
go back to reference W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, J. Mater. Chem. C 20, 5817 (2010).CrossRef W. Zhao, M. Fang, F. Wu, H. Wu, L. Wang, and G. Chen, J. Mater. Chem. C 20, 5817 (2010).CrossRef
36.
go back to reference D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan et al., J. Mater. Chem. C 2, 925 (2014).CrossRef D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan et al., J. Mater. Chem. C 2, 925 (2014).CrossRef
38.
39.
go back to reference C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, and Y. Cui, PLoS ONE 10, e0144842 (2015).CrossRef C. Xu, X. Shi, A. Ji, L. Shi, C. Zhou, and Y. Cui, PLoS ONE 10, e0144842 (2015).CrossRef
40.
41.
go back to reference H. Ahmad, M. Tajdidzadeh, K. Thambiratnam, and M. Yasin, Laser Phys. 28, 066204 (2018).CrossRef H. Ahmad, M. Tajdidzadeh, K. Thambiratnam, and M. Yasin, Laser Phys. 28, 066204 (2018).CrossRef
42.
43.
go back to reference P.C. Ooi, M.A.S.M. Haniff, M.F.M.R. Wee, C.F. Dee, B.T. Goh, M.A. Mohamed, and B.Y. Majlis, Carbon 124, 547 (2017).CrossRef P.C. Ooi, M.A.S.M. Haniff, M.F.M.R. Wee, C.F. Dee, B.T. Goh, M.A. Mohamed, and B.Y. Majlis, Carbon 124, 547 (2017).CrossRef
44.
go back to reference M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, Journal of the Chemical SocietyChem. Commun. 7, 801 (1994).CrossRef M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, and R. Whyman, Journal of the Chemical SocietyChem. Commun. 7, 801 (1994).CrossRef
45.
go back to reference A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, and D. Ekinci, Chemistry Select 2, 6663 (2017). A. Jafarizad, A. Aghanejad, M. Sevim, Ö. Metin, J. Barar, Y. Omidi, and D. Ekinci, Chemistry Select 2, 6663 (2017).
47.
go back to reference F. Mao, U. Wiklund, A.M. Andersson, and U. Jansson, J. Mater. Sci. 50, 6518 (2015).CrossRef F. Mao, U. Wiklund, A.M. Andersson, and U. Jansson, J. Mater. Sci. 50, 6518 (2015).CrossRef
48.
go back to reference S. Amini, H. Kalaantari, J. Garay, A.A. Balandin, and R. Abbaschian, J. Mater. Sci. 46, 6255 (2011).CrossRef S. Amini, H. Kalaantari, J. Garay, A.A. Balandin, and R. Abbaschian, J. Mater. Sci. 46, 6255 (2011).CrossRef
49.
go back to reference R. Beams, L.G. Cançado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 (2015). R. Beams, L.G. Cançado, and L. Novotny, J. Phys.: Condens. Matter 27, 083002 (2015).
50.
51.
go back to reference A.G. İmer, M. Gülcan, M. Çelebi, A. Tombak, and Y.S. Ocak, J. Mater. Sci.: Mater. Electron. 31, 2111 (2020). A.G. İmer, M. Gülcan, M. Çelebi, A. Tombak, and Y.S. Ocak, J. Mater. Sci.: Mater. Electron. 31, 2111 (2020).
52.
go back to reference M.H. Rashid, Microelectronic Circuits: Analysis and Design, 2nd ed., (Stamford.: Cengage Learning, 2011). M.H. Rashid, Microelectronic Circuits: Analysis and Design, 2nd ed., (Stamford.: Cengage Learning, 2011).
53.
go back to reference R. Boylestad, and L. Nashelsky, Electronic Devices and Circuit Theory, 7th ed., (Columbus, Ohio: Prentice Hall, 2000). R. Boylestad, and L. Nashelsky, Electronic Devices and Circuit Theory, 7th ed., (Columbus, Ohio: Prentice Hall, 2000).
54.
55.
go back to reference Y. Saraç, S.Ş Şener, A. Baltakesmez, B. Güzeldir, and M. Sağlam, J. Alloy. Compd. 824, 153899 (2020).CrossRef Y. Saraç, S.Ş Şener, A. Baltakesmez, B. Güzeldir, and M. Sağlam, J. Alloy. Compd. 824, 153899 (2020).CrossRef
56.
go back to reference M. Yıldırım, A. Kocyigit, A. Sarılmaz, and F. Özel, J. Mater. Sci.: Mater. Electron. 30, 332 (2019). M. Yıldırım, A. Kocyigit, A. Sarılmaz, and F. Özel, J. Mater. Sci.: Mater. Electron. 30, 332 (2019).
57.
go back to reference B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S.B. Krupanidhi, AIP Adv. 5, 037130 (2015).CrossRef B. Roul, S. Mukundan, G. Chandan, L. Mohan, and S.B. Krupanidhi, AIP Adv. 5, 037130 (2015).CrossRef
58.
60.
go back to reference M. Gülnahar, T. Karaçali, and H. Efeoğlu, Electrochim. Acta 168, 41 (2015).CrossRef M. Gülnahar, T. Karaçali, and H. Efeoğlu, Electrochim. Acta 168, 41 (2015).CrossRef
61.
62.
go back to reference Ç. Bilkan, S. Zeyrek, S.E. San, and Ş Altındal, Mater. Sci. Semicond. Process. 32, 137 (2015).CrossRef Ç. Bilkan, S. Zeyrek, S.E. San, and Ş Altındal, Mater. Sci. Semicond. Process. 32, 137 (2015).CrossRef
63.
go back to reference Ş Altındal, H. Kanbur, D.E. Yıldız, and M. Parlak, Appl. Surf. Sci. 253, 5056 (2007).CrossRef Ş Altındal, H. Kanbur, D.E. Yıldız, and M. Parlak, Appl. Surf. Sci. 253, 5056 (2007).CrossRef
65.
66.
go back to reference C. Temirci, B. Batı, M. Sağlam, and A. Türüt, Appl. Surf. Sci. 172, 1 (2001).CrossRef C. Temirci, B. Batı, M. Sağlam, and A. Türüt, Appl. Surf. Sci. 172, 1 (2001).CrossRef
67.
go back to reference M. Sağlam, M. Biber, M. Çakar, and A. Türüt, Appl. Surf. Sci. 230, 404 (2004).CrossRef M. Sağlam, M. Biber, M. Çakar, and A. Türüt, Appl. Surf. Sci. 230, 404 (2004).CrossRef
68.
go back to reference S.B.K. Aydın, D.E. Yıldız, H.K. Çavuş, and R. Şahingöz, Bull. Mater. Sci. 37, 1563 (2014).CrossRef S.B.K. Aydın, D.E. Yıldız, H.K. Çavuş, and R. Şahingöz, Bull. Mater. Sci. 37, 1563 (2014).CrossRef
69.
71.
72.
go back to reference A. Ateş, M. Sağlam, B. Güzeldir, M.A. Yıldırım, and A. Astam, J. Optoelectron. Adv. Mater. 12, 1466 (2010). A. Ateş, M. Sağlam, B. Güzeldir, M.A. Yıldırım, and A. Astam, J. Optoelectron. Adv. Mater. 12, 1466 (2010).
73.
go back to reference E. Şenarslan, B. Güzeldir, and M. Sağlam, J. Phys. Chem. Solids 146, 109564 (2020).CrossRef E. Şenarslan, B. Güzeldir, and M. Sağlam, J. Phys. Chem. Solids 146, 109564 (2020).CrossRef
74.
go back to reference A. Türüt, N. Yalçın, and M. Sağlam, Solid State Electron. 35, 835 (1992).CrossRef A. Türüt, N. Yalçın, and M. Sağlam, Solid State Electron. 35, 835 (1992).CrossRef
75.
go back to reference S. Mahato, D. Biswas, L.G. Gerling, C. Voz, and J. Puigdollers, AIP Adv. 7, 085313 (2017).CrossRef S. Mahato, D. Biswas, L.G. Gerling, C. Voz, and J. Puigdollers, AIP Adv. 7, 085313 (2017).CrossRef
76.
go back to reference M.A. Yıldırım, B. Güzeldir, A. Ateş, and M. Sağlam, Microelectron. Eng. 88, 3075 (2011).CrossRef M.A. Yıldırım, B. Güzeldir, A. Ateş, and M. Sağlam, Microelectron. Eng. 88, 3075 (2011).CrossRef
78.
79.
80.
go back to reference N. Yıldırım, K. Ejderha, and A. Türüt, J. Appl. Phys. 108, 114506 (2010).CrossRef N. Yıldırım, K. Ejderha, and A. Türüt, J. Appl. Phys. 108, 114506 (2010).CrossRef
81.
82.
go back to reference I. Jyothi, H.D. Yang, K.H. Shim, V. Janardhanam, S.M. Kang, H. Hong, and C.J. Choi, Mater. Trans. 54, 1655 (2013).CrossRef I. Jyothi, H.D. Yang, K.H. Shim, V. Janardhanam, S.M. Kang, H. Hong, and C.J. Choi, Mater. Trans. 54, 1655 (2013).CrossRef
83.
go back to reference E. Marıl, Ş Altındal, A. Kaya, S. Koçyiğit, and İ Uslu, Philos. Mag. 95, 1049 (2015).CrossRef E. Marıl, Ş Altındal, A. Kaya, S. Koçyiğit, and İ Uslu, Philos. Mag. 95, 1049 (2015).CrossRef
Metadata
Title
Role of Reduced Graphene Oxide-Gold Nanoparticle Composites on Au/Au-RGO/p-Si/Al Structure Depending on Sample Temperature
Authors
M. Sağlam
B. Güzeldir
A. Türüt
D. Ekinci
Publication date
01-06-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 8/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-021-09017-0

Other articles of this Issue 8/2021

Journal of Electronic Materials 8/2021 Go to the issue