Skip to main content
Top
Published in: Journal of Scientific Computing 1/2015

01-10-2015

Role of Time Integration in Computing Transitional Flows Caused by Wall Excitation

Authors: Tapan K. Sengupta, V. K. Sathyanarayanan, M. Sriramkrishnan, Akhil Mulloth

Published in: Journal of Scientific Computing | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Numerical investigation of receptivity and flow transition in spatio-temporal framework have shown the central role of spatio-temporal wave-front (STWF) created by wall excitation for transition of a two-dimensional (2D) zero pressure gradient boundary layer (ZPGBL) in Sengupta and Bhaumik (Phys Rev Lett 107:154501, 2011). Although the STWF is created by linear mechanism, it is the later nonlinear stage of evolution revealed by the solution of Navier–Stokes equation (NSE), which causes formation of turbulent spots merging together to create fully developed turbulent flow. Thus, computing STWF for ZPGBL from NSE is of prime importance, which has been reported by the present authors following earlier theoretical investigation. Similar computational efforts using NSE by other researchers do not report finding the STWF. In the present investigation we identify the main reason for other researchers to miss STWF, as due to taking a very short computational domain. Secondly, we show that even one takes a long enough domain and detect STWF, use of traditional low accuracy method will not produce the correct dynamics as reported by Sengupta and Bhaumik (2011). The role of time integration plays a very strong role in the dynamics of transitional flows. We have shown here that implicit methods are more error prone, as compared to explicit time integration methods during flow transition. For the present problem, it is noted that the classical Crank–Nicolson method is unstable for 2D NSE. Same error-prone nature will also be noted for hybrid implicit–explicit time integration methods (known as the IMEX methods). One of the main feature of present analysis is to highlight the accuracy of computations by compact schemes used by the present investigators over a significantly longer domain and over unlimited time, as opposed to those reported earlier in the literature for the wall excitation problem. A consequence of taking long streamwise domain enables one to detect special properties of STWF and its nonlinear growth. The main focus of the present research is to highlight the importance of STWF, which is a new class of spatio-temporal solution obtained from the linear receptivity by solving Orr–Sommerfeld equation and nonlinear analysis of NSE.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)MathSciNetCrossRefMATH
2.
go back to reference Bhaumik, S.: Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph.D. Thesis, IIT-Kanpur (2013) Bhaumik, S.: Direct numerical simulation of inhomogeneous transitional and turbulent flows. Ph.D. Thesis, IIT-Kanpur (2013)
3.
go back to reference Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of barotropic vorticity equation. Tellus 2(4), 237–254 (1950)MathSciNetCrossRef Charney, J.G., Fjörtoft, R., von Neumann, J.: Numerical integration of barotropic vorticity equation. Tellus 2(4), 237–254 (1950)MathSciNetCrossRef
4.
go back to reference Crank, J., Nicolson, P.A.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Philos. Soc. 43(50), 50–67 (1947)MathSciNetCrossRefMATH Crank, J., Nicolson, P.A.: A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Philos. Soc. 43(50), 50–67 (1947)MathSciNetCrossRefMATH
5.
go back to reference Eiseman, P.R.: Grid generation for fluid mechanics computation. Annu. Rev. Fluid Mech. 17, 487–522 (1985)CrossRef Eiseman, P.R.: Grid generation for fluid mechanics computation. Annu. Rev. Fluid Mech. 17, 487–522 (1985)CrossRef
6.
go back to reference Fasel, H., Konzelmann, U.: Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311–347 (1990)CrossRefMATH Fasel, H., Konzelmann, U.: Non-parallel stability of a flat-plate boundary layer using the complete Navier–Stokes equations. J. Fluid Mech. 221, 311–347 (1990)CrossRefMATH
7.
go back to reference Fasel, H., Rist, U., Konzelmann, U.: Numerical investigation of three dimensional development in boundary layer transition. AIAA J. 28, 29–37 (1990)MathSciNetCrossRef Fasel, H., Rist, U., Konzelmann, U.: Numerical investigation of three dimensional development in boundary layer transition. AIAA J. 28, 29–37 (1990)MathSciNetCrossRef
8.
go back to reference Gaster, M., Grant, I.: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. Roy. Soc. Lond. Ser. A. 347, 253–269 (1975)CrossRef Gaster, M., Grant, I.: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. Roy. Soc. Lond. Ser. A. 347, 253–269 (1975)CrossRef
9.
go back to reference Gaster, M., Sengupta, T.K.: The generation of disturbance in a boundary layer by wall perturbation: the vibrating ribbon revisited once more. In: Ashpis, D.E., Gatski, T.B., Hirsch, R. (eds.) Instabilities and Turbulence in Engineering Flows. Kluwer, Dordrecht (1993) Gaster, M., Sengupta, T.K.: The generation of disturbance in a boundary layer by wall perturbation: the vibrating ribbon revisited once more. In: Ashpis, D.E., Gatski, T.B., Hirsch, R. (eds.) Instabilities and Turbulence in Engineering Flows. Kluwer, Dordrecht (1993)
10.
go back to reference Giraldo, F.X., Kelly, J.F., Constantinescu, E.M.: Implicit-explicit formulations of a three dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comp. (SISC) (in press) Giraldo, F.X., Kelly, J.F., Constantinescu, E.M.: Implicit-explicit formulations of a three dimensional nonhydrostatic unified model of the atmosphere (NUMA). SIAM J. Sci. Comp. (SISC) (in press)
11.
go back to reference Hama, F.R., Nutant, J.: Detailed flow-field observations in the transition process in a thick boundary layer. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 77–93 (1963) Hama, F.R., Nutant, J.: Detailed flow-field observations in the transition process in a thick boundary layer. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 77–93 (1963)
12.
go back to reference Hirsch, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)CrossRef Hirsch, R.S.: Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. J. Comput. Phys. 19, 90–109 (1975)CrossRef
13.
go back to reference Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit-explicit high order Runge–Kutta methods to Discontinuous–Galerkin schemes. J. Comput. Phys. 225, 1753–1781 (2007)MathSciNetCrossRefMATH Kanevsky, A., Carpenter, M.H., Gottlieb, D., Hesthaven, J.S.: Application of implicit-explicit high order Runge–Kutta methods to Discontinuous–Galerkin schemes. J. Comput. Phys. 225, 1753–1781 (2007)MathSciNetCrossRefMATH
14.
go back to reference Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equation. J. Comput. Phys. 58, 308–322 (1985)MathSciNetCrossRef Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equation. J. Comput. Phys. 58, 308–322 (1985)MathSciNetCrossRef
15.
go back to reference Klebanoff, P.S., Tidstrom, K.D., Sargent, L.M.: The three dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 1–34 (1962)CrossRefMATH Klebanoff, P.S., Tidstrom, K.D., Sargent, L.M.: The three dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 1–34 (1962)CrossRefMATH
16.
go back to reference Kovasznay, L.S.G., Komoda, H., Vasudeva, B.R.: Detailed flow-field in transition. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 1–26 (1962) Kovasznay, L.S.G., Komoda, H., Vasudeva, B.R.: Detailed flow-field in transition. In: Proceedings of Heat Transfer and Fluid Mechanics Institute Stanford University Press, pp. 1–26 (1962)
17.
go back to reference Kreiss, H., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef Kreiss, H., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24, 199–215 (1972)MathSciNetCrossRef
18.
go back to reference Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of CFD. Springer, Berlin (2002) Lomax, H., Pulliam, T.H., Zingg, D.W.: Fundamentals of CFD. Springer, Berlin (2002)
19.
go back to reference Persson, P.O.: High-order LES simulations using implicit-explicit Runge–Kutta schemes. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2011-684 Persson, P.O.: High-order LES simulations using implicit-explicit Runge–Kutta schemes. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2011-684
20.
go back to reference Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (2011)MATH Pozrikidis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (2011)MATH
21.
go back to reference Rajpoot, M.K., Sengupta, T.K., Dutt, P.K.: Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229, 3623–3651 (2010)MathSciNetCrossRefMATH Rajpoot, M.K., Sengupta, T.K., Dutt, P.K.: Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229, 3623–3651 (2010)MathSciNetCrossRefMATH
22.
23.
go back to reference Sayadi, T.: Numerical simulation of controlled transition to developed turbulence in a zero-pressure gradient flat-plate boundary layer. Ph.D. Thesis, Department of Mechanics Engineering, Stanford University (2012) Sayadi, T.: Numerical simulation of controlled transition to developed turbulence in a zero-pressure gradient flat-plate boundary layer. Ph.D. Thesis, Department of Mechanics Engineering, Stanford University (2012)
24.
go back to reference Sayadi, T., Hamman, C.W., Moin, P.: Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480–509 (2013)CrossRefMATH Sayadi, T., Hamman, C.W., Moin, P.: Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480–509 (2013)CrossRefMATH
25.
go back to reference Schubauer, G.B., Skramstad, H.K.: Laminar boundary layer oscillations and the stability of laminar flow. J. Aeronaut. Sci. 14(2), 69–78 (1947)CrossRef Schubauer, G.B., Skramstad, H.K.: Laminar boundary layer oscillations and the stability of laminar flow. J. Aeronaut. Sci. 14(2), 69–78 (1947)CrossRef
26.
go back to reference Sengupta, T.K.: Impulse response of laminar boundary layer and receptivity. In: Taylor, C. (ed.) In: Proceedings of the 7th International Conference Numerical Methods for Laminar and Turbulent Layers (1991) Sengupta, T.K.: Impulse response of laminar boundary layer and receptivity. In: Taylor, C. (ed.) In: Proceedings of the 7th International Conference Numerical Methods for Laminar and Turbulent Layers (1991)
27.
go back to reference Sengupta, T.K.: High Accuracy Computing Methods: Fluid flows and Wave Phenomena. Cambridge University Press, Cambridge (2013)CrossRef Sengupta, T.K.: High Accuracy Computing Methods: Fluid flows and Wave Phenomena. Cambridge University Press, Cambridge (2013)CrossRef
28.
go back to reference Sengupta, T.K., Ballav, M., Nijhawan, S.: Generation of Tollmien–Schlichting waves by harmonic excitation. Phys. Fluids 6(3), 1213–1222 (1994)CrossRefMATH Sengupta, T.K., Ballav, M., Nijhawan, S.: Generation of Tollmien–Schlichting waves by harmonic excitation. Phys. Fluids 6(3), 1213–1222 (1994)CrossRefMATH
29.
go back to reference Sengupta, T.K., Bhaumik, S.: Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 107, 154501 (2011)CrossRef Sengupta, T.K., Bhaumik, S.: Onset of turbulence from the receptivity stage of fluid flows. Phys. Rev. Lett. 107, 154501 (2011)CrossRef
30.
go back to reference Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85, 026308 (2012)CrossRef Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E 85, 026308 (2012)CrossRef
31.
go back to reference Sengupta, T.K., Bhaumik, S., Bose, R.: Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013)CrossRef Sengupta, T.K., Bhaumik, S., Bose, R.: Direct numerical simulation of transitional mixed convection flows: viscous and inviscid instability mechanisms. Phys. Fluids 25, 094102 (2013)CrossRef
32.
go back to reference Sengupta, T.K., Bhumkar, Y., Rajpoot, M.K., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetCrossRefMATH Sengupta, T.K., Bhumkar, Y., Rajpoot, M.K., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)MathSciNetCrossRefMATH
33.
go back to reference Sengupta, T.K., De, S., Sarkar, S.: Vortex-induced instability of an incompressible wall-bounded shear layer. J. Fluid Mech. 493, 277–286 (2003)MathSciNetCrossRefMATH Sengupta, T.K., De, S., Sarkar, S.: Vortex-induced instability of an incompressible wall-bounded shear layer. J. Fluid Mech. 493, 277–286 (2003)MathSciNetCrossRefMATH
34.
go back to reference Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21, 225–250 (2004)MathSciNetCrossRefMATH Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21, 225–250 (2004)MathSciNetCrossRefMATH
35.
36.
go back to reference Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47(1), 144–154 (2011)MathSciNetCrossRefMATH Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47(1), 144–154 (2011)MathSciNetCrossRefMATH
37.
go back to reference Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growing wave-fronts in spatially stable boundary layers. Phys. Rev. Lett. 96, 224,504(1)–224,504(4) (2006)CrossRef Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growing wave-fronts in spatially stable boundary layers. Phys. Rev. Lett. 96, 224,504(1)–224,504(4) (2006)CrossRef
38.
go back to reference Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growth of disturbances in a boundary layer and energy based receptivity analysis. Phys. Fluids 18, 094,101(1)–094,101(9) (2006)MathSciNetCrossRef Sengupta, T.K., Rao, A.K., Venkatasubbaiah, K.: Spatio-temporal growth of disturbances in a boundary layer and energy based receptivity analysis. Phys. Fluids 18, 094,101(1)–094,101(9) (2006)MathSciNetCrossRef
39.
go back to reference Swartz, B., Wendroff, B.: The relative efficiency of finite-difference and finite element methods. I: hyperbolic problems and splines. SIAM J. Numer. Anal. 11(5), 979–993 (1974)MathSciNetCrossRefMATH Swartz, B., Wendroff, B.: The relative efficiency of finite-difference and finite element methods. I: hyperbolic problems and splines. SIAM J. Numer. Anal. 11(5), 979–993 (1974)MathSciNetCrossRefMATH
Metadata
Title
Role of Time Integration in Computing Transitional Flows Caused by Wall Excitation
Authors
Tapan K. Sengupta
V. K. Sathyanarayanan
M. Sriramkrishnan
Akhil Mulloth
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9967-1

Other articles of this Issue 1/2015

Journal of Scientific Computing 1/2015 Go to the issue

Premium Partner