Skip to main content
Top
Published in: Journal of Scientific Computing 1/2015

01-10-2015

Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation

Author: Fanhai Zeng

Published in: Journal of Scientific Computing | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose two stable and one conditionally stable finite difference schemes of second-order in both time and space for the time-fractional diffusion-wave equation. In the first scheme, we apply the fractional trapezoidal rule in time and the central difference in space. We use the generalized Newton–Gregory formula in time for the second scheme and its modification for the third scheme. While the second scheme is conditionally stable, the first and the third schemes are stable. We apply the methodology to the considered equation with also linear advection–reaction terms and also obtain second-order schemes both in time and space. Numerical examples with comparisons among the proposed schemes and the existing ones verify the theoretical analysis and show that the present schemes exhibit better performances than the known ones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014, in press) Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. (2014, in press)
2.
go back to reference Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefMATH Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)MathSciNetCrossRefMATH
3.
go back to reference Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)MathSciNetCrossRefMATH Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)MathSciNetCrossRefMATH
5.
go back to reference Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetCrossRefMATH
7.
go back to reference Diethelm, K., Ford, N.J., Freed, A.D., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186, 482–503 (2006)MathSciNetCrossRefMATH Diethelm, K., Ford, N.J., Freed, A.D., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186, 482–503 (2006)MathSciNetCrossRefMATH
8.
go back to reference Ding, H.F., Li, C.P.: Numerical algorithms for the fractional diffusion-wave equation with reaction term. Abstr. Appl. Anal. 2013, 493406 (2013)MathSciNet Ding, H.F., Li, C.P.: Numerical algorithms for the fractional diffusion-wave equation with reaction term. Abstr. Appl. Anal. 2013, 493406 (2013)MathSciNet
9.
go back to reference Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)MathSciNetCrossRefMATH Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)MathSciNetCrossRefMATH
10.
go back to reference Hanygad, A.: Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 458, 933–957 (2002)CrossRef Hanygad, A.: Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 458, 933–957 (2002)CrossRef
11.
go back to reference Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)MathSciNetCrossRefMATH Huang, J., Tang, Y., Vázquez, L., Yang, J.: Two finite difference schemes for time fractional diffusion-wave equation. Numer. Algorithms 64, 707–720 (2013)MathSciNetCrossRefMATH
12.
go back to reference Jafari, M.A., Aminataei, A.: An algorithm for solving multi-term diffusion-wave equations of fractional order. Comput. Math. Appl. 62, 1091–1097 (2011)MathSciNetCrossRefMATH Jafari, M.A., Aminataei, A.: An algorithm for solving multi-term diffusion-wave equations of fractional order. Comput. Math. Appl. 62, 1091–1097 (2011)MathSciNetCrossRefMATH
13.
go back to reference Jafari, H., Momani, S.: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Physics Letters A 370, 388–396 (2007)MathSciNetCrossRefMATH Jafari, H., Momani, S.: Solving fractional diffusion and wave equations by modified homotopy perturbation method. Physics Letters A 370, 388–396 (2007)MathSciNetCrossRefMATH
14.
15.
go back to reference Li, C.P., Zeng, F.H.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)MathSciNetCrossRefMATH Li, C.P., Zeng, F.H.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)MathSciNetCrossRefMATH
16.
go back to reference Li, L.M., Xu, D., Luo, M.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)MathSciNetCrossRef Li, L.M., Xu, D., Luo, M.: Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J. Comput. Phys. 255, 471–485 (2013)MathSciNetCrossRef
17.
go back to reference Lin, R., Liu, F.: Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 66, 856–869 (2007)MathSciNetCrossRefMATH Lin, R., Liu, F.: Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Anal. 66, 856–869 (2007)MathSciNetCrossRefMATH
18.
go back to reference Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013) Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)
20.
go back to reference Lubich, C.: A stability analysis of convolution quadratures for Abel-Volterra integral equations. IMA J. Numer. Anal. 6, 87–101 (1986)MathSciNetCrossRefMATH Lubich, C.: A stability analysis of convolution quadratures for Abel-Volterra integral equations. IMA J. Numer. Anal. 6, 87–101 (1986)MathSciNetCrossRefMATH
21.
go back to reference Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)MathSciNetCrossRef Luchko, Y., Mainardi, F., Povstenko, Y.: Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation. Comput. Math. Appl. 66, 774–784 (2013)MathSciNetCrossRef
22.
23.
go back to reference Mao, Z., Xiao, A.G., Yu, Z.G., Shi, L.: Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations. Sci. World J. 2014, 143983 (2014) Mao, Z., Xiao, A.G., Yu, Z.G., Shi, L.: Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations. Sci. World J. 2014, 143983 (2014)
24.
go back to reference McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)MathSciNetCrossRefMATH
25.
go back to reference Metzler, R., Nonnenmacher, T.F.: Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)CrossRef Metzler, R., Nonnenmacher, T.F.: Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation. Chem. Phys. 284, 67–90 (2002)CrossRef
26.
go back to reference Murillo, J.Q., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dyn. 6, 021014 (2011)CrossRef Murillo, J.Q., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonlinear Dyn. 6, 021014 (2011)CrossRef
27.
go back to reference Murillo, J.Q., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)CrossRef Murillo, J.Q., Yuste, S.B.: A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222, 1987–1998 (2013)CrossRef
28.
go back to reference Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)MathSciNetCrossRefMATH
29.
go back to reference Podlubny, I.: Fractional Differential Equations. Acdemic Press, San Dieg (1999)MATH Podlubny, I.: Fractional Differential Equations. Acdemic Press, San Dieg (1999)MATH
30.
go back to reference Ren, J.C., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56, 381–408 (2013)MathSciNetCrossRefMATH Ren, J.C., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56, 381–408 (2013)MathSciNetCrossRefMATH
32.
33.
go back to reference Sweilam, N.H., Khader, M.M., Adel, M.: On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract. Differ. Calc. 2, 17–29 (2012)MathSciNetCrossRef Sweilam, N.H., Khader, M.M., Adel, M.: On the stability analysis of weighted average finite difference methods for fractional wave equation. Fract. Differ. Calc. 2, 17–29 (2012)MathSciNetCrossRef
34.
go back to reference Vázquez, L.: From Newton’s equation to fractional diffusion and wave equations. Adv. Differ. Equ. 2011, 169421 (2011)CrossRef Vázquez, L.: From Newton’s equation to fractional diffusion and wave equations. Adv. Differ. Equ. 2011, 169421 (2011)CrossRef
35.
go back to reference Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)MathSciNetCrossRef Yang, J.Y., Huang, J.F., Liang, D.M., Tang, Y.F.: Numerical solution of fractional diffusion-wave equation based on fractional multistep method. Appl. Math. Model. 38, 3652–3661 (2014)MathSciNetCrossRef
36.
go back to reference Zeng, F.H., Li, C.P., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetCrossRefMATH Zeng, F.H., Li, C.P., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)MathSciNetCrossRefMATH
37.
go back to reference Zeng, F.H., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. (2014, in press) Zeng, F.H., Li, C.P., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. (2014, in press)
38.
go back to reference Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH
Metadata
Title
Second-Order Stable Finite Difference Schemes for the Time-Fractional Diffusion-Wave Equation
Author
Fanhai Zeng
Publication date
01-10-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9966-2

Other articles of this Issue 1/2015

Journal of Scientific Computing 1/2015 Go to the issue

Premium Partner