Skip to main content
Top
Published in: Meccanica 8/2018

15-12-2017

Rotating electroosmotic flow in a non-uniform microchannel

Authors: Cheng Qi, Chiu-On Ng

Published in: Meccanica | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An analytical model based on lubrication approximation is developed for rotating electroosmotic flow in a narrow slit channel, of which the wall shape and surface potential may vary slowly in the direction of applied fields. The primary and secondary flow fields and the induced pressure gradient, which vary periodically with axial position owing to the gradually varied channel height and surface potentials, are deduced as functions of the inverse Ekman number and the Debye parameter. By studying some limiting cases of special interest, the combined effects of system rotation and the interaction between the geometrical and potential variations are investigated. It is shown that non-uniformity in the channel height and wall potential can qualitatively modify the relationship between system rotation and the primary and secondary flow rates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang X, Cheng C, Wang S, Liu S (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162CrossRef Wang X, Cheng C, Wang S, Liu S (2009) Electroosmotic pumps and their applications in microfluidic systems. Microfluid Nanofluid 6:145–162CrossRef
2.
go back to reference Jakeway SC, de Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresen J Anal Chem 366:525–539CrossRef Jakeway SC, de Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresen J Anal Chem 366:525–539CrossRef
3.
go back to reference Whitesides GM, Stroock DA (2001) Flexible methods for microfluidics. Phys Today 54:42–48CrossRef Whitesides GM, Stroock DA (2001) Flexible methods for microfluidics. Phys Today 54:42–48CrossRef
4.
go back to reference Ren L, Qu W, Li D (2001) Interfacial electrokinetic effects on liquid flow in microchannels. Int J Heat Mass Transf 44:3125–3134CrossRefMATH Ren L, Qu W, Li D (2001) Interfacial electrokinetic effects on liquid flow in microchannels. Int J Heat Mass Transf 44:3125–3134CrossRefMATH
5.
go back to reference Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRef Probstein RF (1994) Physicochemical hydrodynamics: an introduction, 2nd edn. Wiley, New YorkCrossRef
6.
go back to reference Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, London
7.
go back to reference Everett DH (1988) Basic principles of colloid science. Royal Society of Chemistry, LondonCrossRef Everett DH (1988) Basic principles of colloid science. Royal Society of Chemistry, LondonCrossRef
8.
go back to reference Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRef Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Lab on a CD. Annu Rev Biomed Eng 8:601–628CrossRef
10.
go back to reference Wang GJ, Hsu WH, Chang YZ, Yang H (2004) Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation. Biomed Microdevices 6:47–53CrossRef Wang GJ, Hsu WH, Chang YZ, Yang H (2004) Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation. Biomed Microdevices 6:47–53CrossRef
11.
go back to reference Chakraborty S (2013) Microfluidics and microscale transport processes. CRC Press, Boca Raton Chakraborty S (2013) Microfluidics and microscale transport processes. CRC Press, Boca Raton
12.
go back to reference Chang CC, Wang CY (2011) Rotating electro-osmotic flow over a plate or between two plates. Phys Rev E 84:056320ADSCrossRef Chang CC, Wang CY (2011) Rotating electro-osmotic flow over a plate or between two plates. Phys Rev E 84:056320ADSCrossRef
13.
go back to reference Xie ZY, Jian YJ (2014) Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf A Physicochem Eng Asp 461:231–239CrossRef Xie ZY, Jian YJ (2014) Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf A Physicochem Eng Asp 461:231–239CrossRef
14.
go back to reference Li SX, Jian YJ, Xie ZY, Liu QS, Li FQ (2015) Rotating electro-osmotic flow of third grade fluids between two microparallel plates. Colloids Surf A Physicochem Eng Asp 470:240–247CrossRef Li SX, Jian YJ, Xie ZY, Liu QS, Li FQ (2015) Rotating electro-osmotic flow of third grade fluids between two microparallel plates. Colloids Surf A Physicochem Eng Asp 470:240–247CrossRef
15.
go back to reference Abhimanyu P, Kaushik P, Mondal PK, Chakraborty S (2016) Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena. J Non-Newtonian Fluid Mech 231:56–67MathSciNetCrossRef Abhimanyu P, Kaushik P, Mondal PK, Chakraborty S (2016) Transiences in rotational electro-hydrodynamics microflows of a viscoelastic fluid under electrical double layer phenomena. J Non-Newtonian Fluid Mech 231:56–67MathSciNetCrossRef
16.
go back to reference Qi C, Ng CO (2017) Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids Surf A Physicochem Eng Asp 513:355–366CrossRef Qi C, Ng CO (2017) Rotating electroosmotic flow of viscoplastic material between two parallel plates. Colloids Surf A Physicochem Eng Asp 513:355–366CrossRef
18.
go back to reference Kaushik P, Mondal PK, Chakraborty S (2017) Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement. Microfluid Nanofluid 21:122CrossRef Kaushik P, Mondal PK, Chakraborty S (2017) Rotational electrohydrodynamics of a non-Newtonian fluid under electrical double-layer phenomenon: the role of lateral confinement. Microfluid Nanofluid 21:122CrossRef
19.
go back to reference Kaushik P, Abhimanyu P, Mondal PK, Chakraborty S (2017) Confinement effects on the rotational microflows of a viscoelastic fluid under electrical double layer phenomenon. J Non-Newtonian Fluid Mech 244:123–137MathSciNetCrossRef Kaushik P, Abhimanyu P, Mondal PK, Chakraborty S (2017) Confinement effects on the rotational microflows of a viscoelastic fluid under electrical double layer phenomenon. J Non-Newtonian Fluid Mech 244:123–137MathSciNetCrossRef
21.
go back to reference Towns JK, Regnier FE (1991) Capillary electrophoretic separations of proteins using nonionic surfactant coatings. Anal Chem 91:1126–1132CrossRef Towns JK, Regnier FE (1991) Capillary electrophoretic separations of proteins using nonionic surfactant coatings. Anal Chem 91:1126–1132CrossRef
22.
go back to reference Towns JK, Regnier FE (1992) Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis. Anal Chem 64:2473–2478CrossRef Towns JK, Regnier FE (1992) Impact of polycation adsorption on efficiency and electroosmotically driven transport in capillary electrophoresis. Anal Chem 64:2473–2478CrossRef
23.
go back to reference Hu Y, Werner C, Li D (2003) Electrokinetic transport through rough microchannels. Anal Chem 75:5747–5758CrossRef Hu Y, Werner C, Li D (2003) Electrokinetic transport through rough microchannels. Anal Chem 75:5747–5758CrossRef
24.
go back to reference Chang CC, Yang RJ (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14:550–558CrossRef Chang CC, Yang RJ (2004) Computational analysis of electrokinetically driven flow mixing in microchannels with patterned blocks. J Micromech Microeng 14:550–558CrossRef
25.
go back to reference Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 85:3314–3317ADSCrossRef Stroock AD, Weck M, Chiu DT, Huck WTS, Kenis PJA, Ismagilov RF, Whitesides GM (2000) Patterning electro-osmotic flow with patterned surface charge. Phys Rev Lett 85:3314–3317ADSCrossRef
26.
go back to reference Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758ADSCrossRef Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755–758ADSCrossRef
27.
go back to reference Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53:4996–5005ADSCrossRef Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53:4996–5005ADSCrossRef
28.
go back to reference Yang D, Liu Y (2008) Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloids Surf A Physicochem Eng Asp 328:28–33CrossRef Yang D, Liu Y (2008) Numerical simulation of electroosmotic flow in microchannels with sinusoidal roughness. Colloids Surf A Physicochem Eng Asp 328:28–33CrossRef
29.
go back to reference Shit GC, Mondal A, Sinha A, Kundu PK (2016) Effects of slip velocity on rotating electro-osmotic flow in a slowly varying micro-channel. Colloids Surf A Physicochem Eng Asp 489:249–255CrossRef Shit GC, Mondal A, Sinha A, Kundu PK (2016) Effects of slip velocity on rotating electro-osmotic flow in a slowly varying micro-channel. Colloids Surf A Physicochem Eng Asp 489:249–255CrossRef
30.
go back to reference Long D, Stone HA, Ajdari A (1999) Electroosmotic flows created by surface defects in capillary electrophoresis. J Colloid Interface Sci 212:338–349ADSCrossRef Long D, Stone HA, Ajdari A (1999) Electroosmotic flows created by surface defects in capillary electrophoresis. J Colloid Interface Sci 212:338–349ADSCrossRef
31.
go back to reference Ajdari A (2001) Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys Rev E 65:016301ADSCrossRef Ajdari A (2001) Transverse electrokinetic and microfluidic effects in micropatterned channels: lubrication analysis for slab geometries. Phys Rev E 65:016301ADSCrossRef
32.
go back to reference Ghosal S (2002) Lubrication theory for electro-osmotic flow in microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128ADSCrossRefMATH Ghosal S (2002) Lubrication theory for electro-osmotic flow in microfluidic channel of slowly varying cross-section and wall charge. J Fluid Mech 459:103–128ADSCrossRefMATH
33.
go back to reference Ng CO, Zhou Q (2012) Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dyn Res 44:055507ADSMathSciNetCrossRefMATH Ng CO, Zhou Q (2012) Electro-osmotic flow through a thin channel with gradually varying wall potential and hydrodynamic slippage. Fluid Dyn Res 44:055507ADSMathSciNetCrossRefMATH
34.
go back to reference Ng CO, Qi C (2014) Electroosmotic flow of a power-law fluid in a non-uniform microchannel. J Non-Newtonian Fluid Mech 208–209:118–125CrossRef Ng CO, Qi C (2014) Electroosmotic flow of a power-law fluid in a non-uniform microchannel. J Non-Newtonian Fluid Mech 208–209:118–125CrossRef
35.
go back to reference Qi C, Ng CO (2015) Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential. Colloid Surf A Physicochem Eng Asp 472:26–37CrossRef Qi C, Ng CO (2015) Electroosmotic flow of a power-law fluid through an asymmetrical slit microchannel with gradually varying wall shape and wall potential. Colloid Surf A Physicochem Eng Asp 472:26–37CrossRef
36.
go back to reference Qi C, Ng CO (2015) Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential. Eur J Mech B/Fluids 52:160–168MathSciNetCrossRef Qi C, Ng CO (2015) Electroosmotic flow of a power-law fluid in a slit microchannel with gradually varying channel height and wall potential. Eur J Mech B/Fluids 52:160–168MathSciNetCrossRef
37.
go back to reference Deen WM (2012) Analysis of transport phenomena, 2nd edn. Oxford University Press, New York Deen WM (2012) Analysis of transport phenomena, 2nd edn. Oxford University Press, New York
38.
go back to reference Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Clarendon Press, OxfordMATH Tritton DJ (1988) Physical fluid dynamics, 2nd edn. Clarendon Press, OxfordMATH
39.
go back to reference Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, New York. ISBN 0-387-96387-1CrossRefMATH Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, New York. ISBN 0-387-96387-1CrossRefMATH
Metadata
Title
Rotating electroosmotic flow in a non-uniform microchannel
Authors
Cheng Qi
Chiu-On Ng
Publication date
15-12-2017
Publisher
Springer Netherlands
Published in
Meccanica / Issue 8/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0810-2

Other articles of this Issue 8/2018

Meccanica 8/2018 Go to the issue

Premium Partners