Skip to main content
Top
Published in: Meccanica 8/2018

21-11-2017

Using co-rotational method for cracked frame analysis

Authors: Mohammad Rezaiee-Pajand, Nima Gharaei-Moghaddam

Published in: Meccanica | Issue 8/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A cracked element is formulated using the two-filed Hellinger–Reissner functional. Due to utilization of the linear elastic fracture mechanics, only geometrical nonlinearities can be considered for the cracked element. A clear step-by-step algorithm for the element state determination is also presented. The element flexibility matrix is derived in a basic coordinate system. Co-rotational approach is used to transform the element stiffness matrix and the resisting force vector from the basic system to the global one. The suggested element is applicable for static and dynamic analysis, as well as, the stress intensity factor calculation, and also inverse crack detection. Various numerical problems verify accuracy of the proposed element for linear and nonlinear structural analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Formica G, Milicchio F (2016) Crack growth propagation using standard FEM. Eng Fract Mech 165:1–18CrossRef Formica G, Milicchio F (2016) Crack growth propagation using standard FEM. Eng Fract Mech 165:1–18CrossRef
2.
go back to reference Kwan AKH, Ma FJ (2016) Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm. Eng Struct 126:618–627CrossRef Kwan AKH, Ma FJ (2016) Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm. Eng Struct 126:618–627CrossRef
3.
go back to reference Millwater H, Wagner D, Baines A, Montoya A (2016) A virtual crack extension method to compute energy release rates using a complex variable finite element method. Eng Fract Mech 162:95–111CrossRef Millwater H, Wagner D, Baines A, Montoya A (2016) A virtual crack extension method to compute energy release rates using a complex variable finite element method. Eng Fract Mech 162:95–111CrossRef
4.
go back to reference Pasternak I, Pasternak R, Pasternak V, Sulym H (2017) Boundary element analysis of 3D cracks in anisotropic thermo-magneto-electro-elastic solids. Eng Anal Bound Elem 74:70–78MathSciNetCrossRefMATH Pasternak I, Pasternak R, Pasternak V, Sulym H (2017) Boundary element analysis of 3D cracks in anisotropic thermo-magneto-electro-elastic solids. Eng Anal Bound Elem 74:70–78MathSciNetCrossRefMATH
5.
go back to reference Peng X, Atroshchenko E, Kerfriden P, Bordas SPA (2016) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng 316:151–185ADSMathSciNetCrossRef Peng X, Atroshchenko E, Kerfriden P, Bordas SPA (2016) Isogeometric boundary element methods for three dimensional static fracture and fatigue crack growth. Comput Methods Appl Mech Eng 316:151–185ADSMathSciNetCrossRef
6.
go back to reference Yu QQ, Chen T, Gu XL, Zhao XL (2016) Boundary element analysis of edge cracked steel plates strengthened by CFRP laminates. Thin Walled Struct 100:147–157CrossRef Yu QQ, Chen T, Gu XL, Zhao XL (2016) Boundary element analysis of edge cracked steel plates strengthened by CFRP laminates. Thin Walled Struct 100:147–157CrossRef
7.
go back to reference Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 119:419–431CrossRef Shojaei A, Mudric T, Zaccariotto M, Galvanetto U (2016) A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis. Int J Mech Sci 119:419–431CrossRef
8.
go back to reference Zhuang X, Cai Y, Augarde C (2014) A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoret Appl Fract Mech 69:118–125CrossRef Zhuang X, Cai Y, Augarde C (2014) A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoret Appl Fract Mech 69:118–125CrossRef
9.
go back to reference Nasirmanesh A, Mohammadi S (2017) Eigenvalue buckling analysis of cracked functionally graded cylindrical shells in the framework of the extended finite element method. Compos Struct 159:548–566CrossRef Nasirmanesh A, Mohammadi S (2017) Eigenvalue buckling analysis of cracked functionally graded cylindrical shells in the framework of the extended finite element method. Compos Struct 159:548–566CrossRef
10.
go back to reference Sadeghirad A, Chopp DL, Ren X, Fang E, Lua J (2016) A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Eng Fract Mech 160:1–14CrossRef Sadeghirad A, Chopp DL, Ren X, Fang E, Lua J (2016) A novel hybrid approach for level set characterization and tracking of non-planar 3D cracks in the extended finite element method. Eng Fract Mech 160:1–14CrossRef
11.
go back to reference Bui TQ (2015) Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput Methods Appl Mech Eng 295:470–509ADSMathSciNetCrossRef Bui TQ (2015) Extended isogeometric dynamic and static fracture analysis for cracks in piezoelectric materials using NURBS. Comput Methods Appl Mech Eng 295:470–509ADSMathSciNetCrossRef
12.
go back to reference Choi MJ, Cho S (2015) Isogeometric analysis of stress intensity factors for curved crack problems. Theoret Appl Fract Mech 75:89–103CrossRef Choi MJ, Cho S (2015) Isogeometric analysis of stress intensity factors for curved crack problems. Theoret Appl Fract Mech 75:89–103CrossRef
13.
go back to reference Yang Y, Sun G, Zheng H, Fu X (2016) A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis. Comput Struct 177:69–82CrossRef Yang Y, Sun G, Zheng H, Fu X (2016) A four-node quadrilateral element fitted to numerical manifold method with continuous nodal stress for crack analysis. Comput Struct 177:69–82CrossRef
14.
go back to reference Yang Y, Zheng H (2016) A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis. Eng Fract Mech 162:51–75CrossRef Yang Y, Zheng H (2016) A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis. Eng Fract Mech 162:51–75CrossRef
15.
go back to reference Zheng H, Liu F, Du X (2015) Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method. Comput Methods Appl Mech Eng 295:150–171ADSMathSciNetCrossRef Zheng H, Liu F, Du X (2015) Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method. Comput Methods Appl Mech Eng 295:150–171ADSMathSciNetCrossRef
16.
go back to reference Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9(3):495–507CrossRefMATH Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9(3):495–507CrossRefMATH
17.
go back to reference Nejati M, Paluszny A, Zimmerman RW (2015) On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics. Eng Fract Mech 144:194–221CrossRef Nejati M, Paluszny A, Zimmerman RW (2015) On the use of quarter-point tetrahedral finite elements in linear elastic fracture mechanics. Eng Fract Mech 144:194–221CrossRef
18.
go back to reference Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element hybrid method. In: 3. Conference on matrix methods in structural mechanics, Wright Patterson Air Force Base, Ohio, pp 661–682 Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element hybrid method. In: 3. Conference on matrix methods in structural mechanics, Wright Patterson Air Force Base, Ohio, pp 661–682
19.
go back to reference Kunter K, Heubrandtner T, Suhr B, Pippan R (2014) A hybrid crack tip element containing a strip-yield crack-tip plasticity model. Eng Fract Mech 129:3–13CrossRef Kunter K, Heubrandtner T, Suhr B, Pippan R (2014) A hybrid crack tip element containing a strip-yield crack-tip plasticity model. Eng Fract Mech 129:3–13CrossRef
20.
go back to reference Okamura H, Liu HW, Chu CS, Liebowitz H (1969) A cracked column under compression. Eng Fract Mech 1(3):547–564CrossRef Okamura H, Liu HW, Chu CS, Liebowitz H (1969) A cracked column under compression. Eng Fract Mech 1(3):547–564CrossRef
21.
go back to reference Okamura H, Watanabe K, Takano T (1973) Applications of the compliance concept in fracture mechanics. In: Progress in flaw growth and fracture toughness testing. ASTM International Okamura H, Watanabe K, Takano T (1973) Applications of the compliance concept in fracture mechanics. In: Progress in flaw growth and fracture toughness testing. ASTM International
22.
go back to reference Saavedra PN, Cuitino LA (2001) Crack detection and vibration behavior of cracked beams. Comput Struct 79(16):1451–1459CrossRef Saavedra PN, Cuitino LA (2001) Crack detection and vibration behavior of cracked beams. Comput Struct 79(16):1451–1459CrossRef
23.
go back to reference Krawczuk M, Żak A, Ostachowicz W (2000) Elastic beam finite element with a transverse elasto-plastic crack. Finite Elem Anal Des 34(1):61–73CrossRefMATH Krawczuk M, Żak A, Ostachowicz W (2000) Elastic beam finite element with a transverse elasto-plastic crack. Finite Elem Anal Des 34(1):61–73CrossRefMATH
24.
go back to reference Viola E, Nobile L, Federici L (2002) Formulation of cracked beam element for structural analysis. J Eng Mech 128(2):220–230CrossRef Viola E, Nobile L, Federici L (2002) Formulation of cracked beam element for structural analysis. J Eng Mech 128(2):220–230CrossRef
25.
go back to reference Bouboulas AS, Anifantis NK (2008) Formulation of cracked beam element for analysis of fractured skeletal structures. Eng Struct 30(4):894–901CrossRef Bouboulas AS, Anifantis NK (2008) Formulation of cracked beam element for analysis of fractured skeletal structures. Eng Struct 30(4):894–901CrossRef
26.
go back to reference Skrinar M, Pliberšek T (2007) New finite element for transversely cracked slender beams subjected to transverse loads. Comput Mater Sci 39(1):250–260CrossRef Skrinar M, Pliberšek T (2007) New finite element for transversely cracked slender beams subjected to transverse loads. Comput Mater Sci 39(1):250–260CrossRef
27.
go back to reference Skrinar M (2009) Improved beam finite element for the stability analysis of slender transversely cracked beam-columns. Comput Mater Sci 45(3):663–668MathSciNetCrossRef Skrinar M (2009) Improved beam finite element for the stability analysis of slender transversely cracked beam-columns. Comput Mater Sci 45(3):663–668MathSciNetCrossRef
28.
go back to reference Skrinar M, Lutar B (2012) A three-node beam finite element for transversely cracked slender beams on Winkler’s foundation. Comput Mater Sci 64:260–264CrossRef Skrinar M, Lutar B (2012) A three-node beam finite element for transversely cracked slender beams on Winkler’s foundation. Comput Mater Sci 64:260–264CrossRef
29.
go back to reference Skrinar M (2013) Computational analysis of multi-stepped beams and beams with linearly-varying heights implementing closed-form finite element formulation for multi-cracked beam elements. Int J Solids Struct 50(14):2527–2541CrossRef Skrinar M (2013) Computational analysis of multi-stepped beams and beams with linearly-varying heights implementing closed-form finite element formulation for multi-cracked beam elements. Int J Solids Struct 50(14):2527–2541CrossRef
30.
go back to reference Shirazizadeh MR, Shahverdi H (2015) An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section. Int J Mech Sci 99:1–9CrossRef Shirazizadeh MR, Shahverdi H (2015) An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section. Int J Mech Sci 99:1–9CrossRef
31.
go back to reference Shirazizadeh MR, Shahverdi H, Imam A (2016) A simple finite element procedure for free vibration and buckling analysis of cracked beam-like structures. J Solid Mech 8(1):93–103 Shirazizadeh MR, Shahverdi H, Imam A (2016) A simple finite element procedure for free vibration and buckling analysis of cracked beam-like structures. J Solid Mech 8(1):93–103
32.
go back to reference Akbas SD (2015) Large deflection analysis of edge cracked simple supported beams. Struct Eng Mech 54(3):433–451CrossRef Akbas SD (2015) Large deflection analysis of edge cracked simple supported beams. Struct Eng Mech 54(3):433–451CrossRef
33.
go back to reference Rezaiee-Pajand M, Gharaei-Moghaddam N (2017) A cracked element based on the compliance concept. Theoret Appl Fract Mech 92:122–132CrossRef Rezaiee-Pajand M, Gharaei-Moghaddam N (2017) A cracked element based on the compliance concept. Theoret Appl Fract Mech 92:122–132CrossRef
34.
go back to reference Neuenhofer A, Filippou FC (1998) Geometrically nonlinear flexibility-based frame finite element. J Struct Eng 124(6):704–711CrossRef Neuenhofer A, Filippou FC (1998) Geometrically nonlinear flexibility-based frame finite element. J Struct Eng 124(6):704–711CrossRef
35.
go back to reference De Souza RM (2000) Force-based finite element for large displacement inelastic analysis of frames. Doctoral dissertation, University of California, Berkeley De Souza RM (2000) Force-based finite element for large displacement inelastic analysis of frames. Doctoral dissertation, University of California, Berkeley
36.
go back to reference Rezaiee-Pajand M, Gharaei-Moghaddam N (2017) Frame nonlinear analysis by force method. Int J Steel Struct 17(2):609–629CrossRef Rezaiee-Pajand M, Gharaei-Moghaddam N (2017) Frame nonlinear analysis by force method. Int J Steel Struct 17(2):609–629CrossRef
37.
go back to reference Rezaiee-Pajand M, Gharaei-Moghaddam N (2015) Analysis of 3D Timoshenko frames having geometrical and material nonlinearities. Int J Mech Sci 94:140–155CrossRef Rezaiee-Pajand M, Gharaei-Moghaddam N (2015) Analysis of 3D Timoshenko frames having geometrical and material nonlinearities. Int J Mech Sci 94:140–155CrossRef
38.
go back to reference Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. ASME, New York Tada H, Paris PC, Irwin GR (2000) The stress analysis of cracks handbook. ASME, New York
39.
go back to reference Manuel FS, Lee SL, Rossow EC (1968) Large deflections and stability of elastic frames. In: Optimization and nonlinear problems: trends in structural engineering. ASCE, pp 129–132 Manuel FS, Lee SL, Rossow EC (1968) Large deflections and stability of elastic frames. In: Optimization and nonlinear problems: trends in structural engineering. ASCE, pp 129–132
40.
go back to reference Kam TY, Lee TY (1994) Crack size identification using an expanded mode method. Int J Solids Struct 31(7):925–940CrossRefMATH Kam TY, Lee TY (1994) Crack size identification using an expanded mode method. Int J Solids Struct 31(7):925–940CrossRefMATH
41.
go back to reference Guinea GV, Pastor JY, Planas J, Elices M (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fract 89(2):103–116CrossRef Guinea GV, Pastor JY, Planas J, Elices M (1998) Stress intensity factor, compliance and CMOD for a general three-point-bend beam. Int J Fract 89(2):103–116CrossRef
Metadata
Title
Using co-rotational method for cracked frame analysis
Authors
Mohammad Rezaiee-Pajand
Nima Gharaei-Moghaddam
Publication date
21-11-2017
Publisher
Springer Netherlands
Published in
Meccanica / Issue 8/2018
Print ISSN: 0025-6455
Electronic ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0796-9

Other articles of this Issue 8/2018

Meccanica 8/2018 Go to the issue

Premium Partners