Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 3/2020

06-07-2019 | Original Article

Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production

Authors: Dash Indira, R. Jayabalan

Published in: Biomass Conversion and Biorefinery | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Global water scarcity at an alarming stage has triggered the interest of many environmentalists and global researchers. Use of freshwater in biomass-based industries would result in depletion of a precious natural resource, which is not sustainable in the long term. Thus, water management technologies are critical to the successful operation of an ethanol plant. Utilization of seawater-based systems and halotolerant enzymes can be a breakthrough in this context. The present study involves marine bacterial strains Bacillus oceanisediminis, Brevibacterium halotolerans, and Psychrobacter celer capable of producing halotolerant cellulases, isolated from Gopalpur, Odisha. The crude enzyme extracts and direct bacterial cultures were independently utilized for saccharification of pretreated rice straw, and the treated rice straw was characterized for the production of reducing sugars using high-performance liquid chromatography (HPLC). The possible bond breakage and formation during saccharification of cellulose was assessed using attenuated total reflectance with Fourier transform infrared (ATR-FTIR) spectroscopy. The relative fraction and size of crystallites in cellulose was evaluated by X-ray diffraction (XRD) study. The biomass saccharified using the crude cellulase from B. oceanisedimins was utilized for the production of bioethanol in freshwater and seawater-based media using Saccharomyces cerevisiae NCIM 3570 and Candida shehatae NCIM 3500. The maximum fermentation efficiency (45.74%) was recorded for saccharified rice straw in freshwater using a consortium of immobilized yeasts. The highest fermentation efficiency (36.69%) was recorded in the seawater system by immobilized S. cerevisiae.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference WWAP (United Nations World Water Assessment Programme) (2014) The United Nations world water development report 2014: water and energy. UNESCO, Paris WWAP (United Nations World Water Assessment Programme) (2014) The United Nations world water development report 2014: water and energy. UNESCO, Paris
2.
go back to reference Indira D, Das B, Balasubramanian P, Jayabalan R. (2018) Sea water as a reaction medium for bioethanol production. In Patra JK, Das G, Shin HS (Eds.), Microbial Biotechnology: Application in Food and Pharmacology. (pp. 171-192). Singapore: Springer Indira D, Das B, Balasubramanian P, Jayabalan R. (2018) Sea water as a reaction medium for bioethanol production. In Patra JK, Das G, Shin HS (Eds.), Microbial Biotechnology: Application in Food and Pharmacology. (pp. 171-192). Singapore: Springer
3.
go back to reference Keeney D, Muller M (2006) Water use by ethanol plants: potential challenges. Institute for Agriculture and Trade Policy, Minneapolis, MN Keeney D, Muller M (2006) Water use by ethanol plants: potential challenges. Institute for Agriculture and Trade Policy, Minneapolis, MN
4.
go back to reference Ren H, Zong MH, Wu H, Li N (2016) Utilization of seawater for the biorefinery of lignocellulosic biomass: ionic liquid pretreatment, enzymatic hydrolysis, and microbial lipid production. ACS Sustain Chem Eng 4(10):5659–5666CrossRef Ren H, Zong MH, Wu H, Li N (2016) Utilization of seawater for the biorefinery of lignocellulosic biomass: ionic liquid pretreatment, enzymatic hydrolysis, and microbial lipid production. ACS Sustain Chem Eng 4(10):5659–5666CrossRef
5.
go back to reference Lima RN, Porto ALM (2016) Recent advances in marine enzymes for biotechnological processes. In Advances in food and nutrition research (Vol. 78, pp. 153-192). Academic Press Lima RN, Porto ALM (2016) Recent advances in marine enzymes for biotechnological processes. In Advances in food and nutrition research (Vol. 78, pp. 153-192). Academic Press
6.
go back to reference Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3:825–834CrossRef Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 3:825–834CrossRef
7.
go back to reference Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable a-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495CrossRef Hutcheon GW, Vasisht N, Bolhuis A (2005) Characterisation of a highly stable a-amylase from the halophilic archaeon Haloarcula hispanica. Extremophiles 9:487–495CrossRef
8.
go back to reference Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4(1):2CrossRef Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4(1):2CrossRef
9.
go back to reference Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2010) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 83(2):891–897CrossRef Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2010) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohydr Polym 83(2):891–897CrossRef
10.
go back to reference Grande PM, De Maria PD (2012) Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater. Bioresour Technol 104:799–802CrossRef Grande PM, De Maria PD (2012) Enzymatic hydrolysis of microcrystalline cellulose in concentrated seawater. Bioresour Technol 104:799–802CrossRef
11.
go back to reference Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549CrossRef Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzym Microb Technol 46(7):541–549CrossRef
12.
go back to reference Yang H, Pfister S, Bhaduri A (2013) Accounting for a scarce resource: virtual water and water footprint in the global water system. Curr Opin Environ Sustain 5(6):599–606CrossRef Yang H, Pfister S, Bhaduri A (2013) Accounting for a scarce resource: virtual water and water footprint in the global water system. Curr Opin Environ Sustain 5(6):599–606CrossRef
13.
go back to reference Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci 106(25):10219–10223CrossRef Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci 106(25):10219–10223CrossRef
14.
go back to reference Gerbens-Leenes W, Hoekstra AY (2012) The water footprint of sweeteners and bio-ethanol. Environ Int 40:202–211CrossRef Gerbens-Leenes W, Hoekstra AY (2012) The water footprint of sweeteners and bio-ethanol. Environ Int 40:202–211CrossRef
15.
go back to reference Zaky AS, Greetham D, Louis EJ, Tucker G, Du C (2016) A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. J Microbiol Biotechnol 26(11):1891–1907CrossRef Zaky AS, Greetham D, Louis EJ, Tucker G, Du C (2016) A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. J Microbiol Biotechnol 26(11):1891–1907CrossRef
16.
go back to reference Greetham D, Zaky A, Makanjuola O, Du C (2018) A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr Opin Green Sustain Chem 14: 53-59 Greetham D, Zaky A, Makanjuola O, Du C (2018) A brief review on bioethanol production using marine biomass, marine microorganism and seawater. Curr Opin Green Sustain Chem 14: 53-59
17.
go back to reference Klement T, Milker S, Jäger G, Grande PM, de María PD, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1): 43 Klement T, Milker S, Jäger G, Grande PM, de María PD, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11(1): 43
18.
go back to reference Vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, de María PD (2010) Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem 12(10):1844–1849CrossRef Vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, de María PD (2010) Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem 12(10):1844–1849CrossRef
19.
go back to reference Senthilraja P, Kathiresan K, Saravanakumar K (2011) Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res 2(8):113–116 Senthilraja P, Kathiresan K, Saravanakumar K (2011) Comparative analysis of bioethanol production by different strains of immobilized marine yeast. J Yeast Fungal Res 2(8):113–116
20.
go back to reference Urano N, Yamazaki M, Ueno R (2001) Distribution of halotolerant and/or fermentative yeasts in aquatic environments. J Tokyo Univ Fish 87:23–30 Urano N, Yamazaki M, Ueno R (2001) Distribution of halotolerant and/or fermentative yeasts in aquatic environments. J Tokyo Univ Fish 87:23–30
21.
go back to reference Gonçalves FA, Santos ESD, de Macedo GR (2015) Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater. J Basic Microbiol 55(6):695–708CrossRef Gonçalves FA, Santos ESD, de Macedo GR (2015) Alcoholic fermentation of Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis in the presence of inhibitory compounds and seawater. J Basic Microbiol 55(6):695–708CrossRef
22.
go back to reference Templeton D, Ehrman T (1995) Chemical analysis and testing task: LAP-003 (Determination of acid-insoluble lignin in Biomass) National Renewable Energy Laboratory. Golden, USA Templeton D, Ehrman T (1995) Chemical analysis and testing task: LAP-003 (Determination of acid-insoluble lignin in Biomass) National Renewable Energy Laboratory. Golden, USA
23.
go back to reference Tailliez P, Girard H, Millet J, Beguin P (1989) Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):207–211CrossRef Tailliez P, Girard H, Millet J, Beguin P (1989) Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55(1):207–211CrossRef
24.
go back to reference Indira D, Sharmila D, Balasubramanian P, Thirugnanam A, Jayabalan R (2016) Utilization of sea water based media for the production and characterization of cellulase by Fusarium subglutinans MTCC 11891. Biocatal Agric Biotechnol 7:187–192CrossRef Indira D, Sharmila D, Balasubramanian P, Thirugnanam A, Jayabalan R (2016) Utilization of sea water based media for the production and characterization of cellulase by Fusarium subglutinans MTCC 11891. Biocatal Agric Biotechnol 7:187–192CrossRef
25.
go back to reference Beecher JF, Hunt CG, Zhu JY (2009) Tools for the characterization of biomass at the nanometer scale, The nanoscience and technology of renewable biomaterials, 1st edn. Blackwell Publishing, Singapore, pp 61–80 Beecher JF, Hunt CG, Zhu JY (2009) Tools for the characterization of biomass at the nanometer scale, The nanoscience and technology of renewable biomaterials, 1st edn. Blackwell Publishing, Singapore, pp 61–80
26.
go back to reference Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10CrossRef Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10CrossRef
27.
go back to reference Indira D, Jijnasa B, Arati N, Moumita S, Ajay D, Eldin J, Jayabalan R (2015) Comparative studies of ethanol production and cell viability: free cells versus immobilized cells. Res J Pharm Biol Chem Sci 6(2):1708–1714 Indira D, Jijnasa B, Arati N, Moumita S, Ajay D, Eldin J, Jayabalan R (2015) Comparative studies of ethanol production and cell viability: free cells versus immobilized cells. Res J Pharm Biol Chem Sci 6(2):1708–1714
28.
go back to reference Berłowska J, Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Patelski P, Dziugan P, Kręgiel D (2016) Simultaneous saccharification and fermentation of sugar beet pulp for efficient bioethanol production. BioMed Res Intl 2016, 3154929, 10 pages. Berłowska J, Pielech-Przybylska K, Balcerek M, Dziekońska-Kubczak U, Patelski P, Dziugan P, Kręgiel D (2016) Simultaneous saccharification and fermentation of sugar beet pulp for efficient bioethanol production. BioMed Res Intl 2016, 3154929, 10 pages.
29.
go back to reference Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol 2:14–32 Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol 2:14–32
30.
go back to reference Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424CrossRef Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424CrossRef
31.
go back to reference Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100(19):4374–4380CrossRef Ko JK, Bak JS, Jung MW, Lee HJ, Choi IG, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100(19):4374–4380CrossRef
32.
go back to reference Zaky AS, Pensupa N, Andrade-Eiroa Á, Tucker GA, Du C (2017) A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. J Food Compos Anal 56:25–33CrossRef Zaky AS, Pensupa N, Andrade-Eiroa Á, Tucker GA, Du C (2017) A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. J Food Compos Anal 56:25–33CrossRef
33.
go back to reference Michell AJ, Schimleck LR (1996) NIR spectroscopy of woods from Eucalyptus globules. Appita J 49(1):23–26 Michell AJ, Schimleck LR (1996) NIR spectroscopy of woods from Eucalyptus globules. Appita J 49(1):23–26
34.
go back to reference Baillères H, Davrieux F, Ham-Pichavant F (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Ann For Sci 59(5–6):479–490CrossRef Baillères H, Davrieux F, Ham-Pichavant F (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Ann For Sci 59(5–6):479–490CrossRef
35.
go back to reference Adina CHIŞ, Florinela FETEA, Abdelmoumen TAOUTAOU, Carmen S (2010) Application of FTIR spectroscopy for a rapid determination of some hydrolytic enzymes activity on sea buckthorn substrate. Rom Biotechnol Lett 15(6):5738–5744 Adina CHIŞ, Florinela FETEA, Abdelmoumen TAOUTAOU, Carmen S (2010) Application of FTIR spectroscopy for a rapid determination of some hydrolytic enzymes activity on sea buckthorn substrate. Rom Biotechnol Lett 15(6):5738–5744
36.
go back to reference Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809CrossRef
37.
go back to reference Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40CrossRef
38.
go back to reference Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6:2815–2821CrossRef Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a Fourier transform infrared model compound study. Biomacromolecules 6:2815–2821CrossRef
39.
go back to reference Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali pretreated biomasses. Biotechnol Bioeng 109:353–362CrossRef Sills DL, Gossett JM (2012) Using FTIR to predict saccharification from enzymatic hydrolysis of alkali pretreated biomasses. Biotechnol Bioeng 109:353–362CrossRef
40.
go back to reference Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37(1):109–116CrossRef Binod P, Satyanagalakshmi K, Sindhu R, Janu KU, Sukumaran RK, Pandey A (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew Energy 37(1):109–116CrossRef
41.
go back to reference Karthika K, Arun AB, Rekha PD (2012) Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr Polym 90(2):1038–1045CrossRef Karthika K, Arun AB, Rekha PD (2012) Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohydr Polym 90(2):1038–1045CrossRef
42.
go back to reference Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquidammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41CrossRef Mittal A, Katahira R, Himmel ME, Johnson DK (2011) Effects of alkaline or liquidammonia treatment on crystalline cellulose: changes in crystalline structure and effects on enzymatic digestibility. Biotechnol Biofuels 4:41CrossRef
43.
go back to reference Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631CrossRef Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631CrossRef
44.
go back to reference Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102(23):10915–10921CrossRef Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102(23):10915–10921CrossRef
45.
go back to reference Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90CrossRef Samuel R, Pu Y, Foston M, Ragauskas AJ (2010) Solid-state NMR characterization of switchgrass cellulose after dilute acid pretreatment. Biofuels 1(1):85–90CrossRef
46.
go back to reference Zhang T, Datta S, Eichler J, Ivanova N, Axen SD (2011) Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem 13:2083–2090CrossRef Zhang T, Datta S, Eichler J, Ivanova N, Axen SD (2011) Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance. Green Chem 13:2083–2090CrossRef
47.
go back to reference Cao Y, Tan HJ (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705:189–193CrossRef Cao Y, Tan HJ (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705:189–193CrossRef
48.
go back to reference Kshirsagar SD, Waghmare PR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv 5(58):46525–46533CrossRef Kshirsagar SD, Waghmare PR, Loni PC, Patil SA, Govindwar SP (2015) Dilute acid pretreatment of rice straw, structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv 5(58):46525–46533CrossRef
49.
go back to reference Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Molbiol Rev 66(2):300–372CrossRef Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Molbiol Rev 66(2):300–372CrossRef
50.
go back to reference Zaky AS, Greetham D, Tucker GA, Du C (2018) The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci Rep 8(1):12127CrossRef Zaky AS, Greetham D, Tucker GA, Du C (2018) The establishment of a marine focused biorefinery for bioethanol production using seawater and a novel marine yeast strain. Sci Rep 8(1):12127CrossRef
51.
go back to reference Fang C, Thomsen MH, Brudecki GP, Cybulska I, Frankaer CG, Oyanedel JRB, Schmidt JE (2015) Seawater as an alternative to fresh water in the pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8(22):3823–3831CrossRef Fang C, Thomsen MH, Brudecki GP, Cybulska I, Frankaer CG, Oyanedel JRB, Schmidt JE (2015) Seawater as an alternative to fresh water in the pretreatment of date palm residues for bioethanol production in coastal and/or arid areas. ChemSusChem 8(22):3823–3831CrossRef
52.
go back to reference Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Nat Acad Sci 106(5):1368–1373CrossRef Lau MW, Dale BE (2009) Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A (LNH-ST). Proc Nat Acad Sci 106(5):1368–1373CrossRef
53.
go back to reference Fu N, Peiris P (2008) Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol 24:1091–1097CrossRef Fu N, Peiris P (2008) Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol 24:1091–1097CrossRef
54.
go back to reference Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283CrossRef Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283CrossRef
55.
go back to reference Lebeau T, Jouenne T, Junter GA (1997) Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzym Microb Technol 21:265–272CrossRef Lebeau T, Jouenne T, Junter GA (1997) Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzym Microb Technol 21:265–272CrossRef
56.
go back to reference Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KCAM (1991) Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzym Microb Technol 13:828–833CrossRef Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KCAM (1991) Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzym Microb Technol 13:828–833CrossRef
57.
go back to reference Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylose-fermenting yeast. J Ferment Bioeng 75:207–212CrossRef Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylose-fermenting yeast. J Ferment Bioeng 75:207–212CrossRef
58.
go back to reference De Bari I, Cuna D, Nanna F, Braccio G (2004) Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Appl Biochem Biotechnol 114:539–557CrossRef De Bari I, Cuna D, Nanna F, Braccio G (2004) Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Appl Biochem Biotechnol 114:539–557CrossRef
59.
go back to reference Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45CrossRef Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45CrossRef
60.
go back to reference Greetham D, Zaky AS, Du C (2019) Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustain Energy Fuels 3(6):1545–1553CrossRef Greetham D, Zaky AS, Du C (2019) Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustain Energy Fuels 3(6):1545–1553CrossRef
Metadata
Title
Saccharification of lignocellulosic biomass using seawater and halotolerant cellulase with potential application in second-generation bioethanol production
Authors
Dash Indira
R. Jayabalan
Publication date
06-07-2019
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 3/2020
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-019-00468-4

Other articles of this Issue 3/2020

Biomass Conversion and Biorefinery 3/2020 Go to the issue