Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2016

08-08-2016

SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment

Authors: K. Indira, T. Nishimura

Published in: Journal of Materials Engineering and Performance | Issue 10/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper investigates the effect of chromium (Cr) content (0, 1, 3 and 5% Cr) in epoxy-coated alloy steel against corrosion using in situ electrochemical techniques such as EIS and SECM in a 3% NaCl solution. The EIS results revealed that the epoxy-coated Cr steel exhibited higher impedance values than carbon steel, which is attributed to the greater resistance of Cr steel toward corrosion. Based on the cyclic voltammogram results, the tip potentials were set at −0.7, 0.04 and 0.60 V for determining the concentration of dissolved oxygen at cathodic region, and oxidation of Cr2+ and Fe2+ at anodic region, respectively. The SECM measurements showed that, the tip current in the anodic region has decreased with increase in Cr content of the sample, which indicates that the oxidation of Fe2+ and Cr2+ decreases (corrosion is reduced) with the increase in Cr content of the steel. Besides, 5% Cr steel can maintain the highest corrosion resistance, and 1 and 3% Cr steels have higher corrosion resistance than the 0% Cr steel. This higher corrosion resistance of Cr steel samples could be due to the formation of Cr-rich hydro-oxide layers [Cr(OH)3 as a corrosion product] on the surface of the samples. Thus, the epoxy-coated Cr alloy steel has greater corrosion resistance in a chloride-containing environment than the carbon steel. Hence, epoxy-coated Cr alloy steel can be successfully used as a construction material in structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N. Mohamed, M. Boulfiza, and R. Evitts, Corrosion of carbon steel and corrosion-resistant rebars in concrete structures under chloride ion attack, J. Mater. Eng. Perform., 2013, 22, p 787–795CrossRef N. Mohamed, M. Boulfiza, and R. Evitts, Corrosion of carbon steel and corrosion-resistant rebars in concrete structures under chloride ion attack, J. Mater. Eng. Perform., 2013, 22, p 787–795CrossRef
2.
go back to reference S.A. Park, S.H. Lee, and J.G. Kim, Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid, Met. Mater. Int., 2012, 18, p 975–987CrossRef S.A. Park, S.H. Lee, and J.G. Kim, Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid, Met. Mater. Int., 2012, 18, p 975–987CrossRef
3.
go back to reference S.A. Park, W.S. Ji, and J.G. Kim, Effect of chromium on the corrosion behavior of low alloy steel containing copper in FGD environment, Int. J. Electrochem. Sci., 2013, 8, p 7498–7509 S.A. Park, W.S. Ji, and J.G. Kim, Effect of chromium on the corrosion behavior of low alloy steel containing copper in FGD environment, Int. J. Electrochem. Sci., 2013, 8, p 7498–7509
4.
go back to reference R.G. Duarte, A.S. Castela, R. Neves, L. Freire, and M.F. Montemor, Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study, Electrochim. Acta, 2014, 24, p 218–224CrossRef R.G. Duarte, A.S. Castela, R. Neves, L. Freire, and M.F. Montemor, Corrosion behavior of stainless steel rebars embedded in concrete: an electrochemical impedance spectroscopy study, Electrochim. Acta, 2014, 24, p 218–224CrossRef
5.
go back to reference R.M. Souto, Y.G. Garcia, and S. Gonzalez, In-situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals, Corros. Sci., 2005, 47, p 3312–3323CrossRef R.M. Souto, Y.G. Garcia, and S. Gonzalez, In-situ monitoring of electroactive species by using the scanning electrochemical microscope. Application to the investigation of degradation processes at defective coated metals, Corros. Sci., 2005, 47, p 3312–3323CrossRef
6.
go back to reference R.M. Souto, Y.G. Garcia, S. Gonzalez, and G.T. Burstein, Imaging the origins of organic coating degradation and blistering caused by electrolyte immersion assisted by SECM, Electroanalysis, 2009, 21, p 2569–2574CrossRef R.M. Souto, Y.G. Garcia, S. Gonzalez, and G.T. Burstein, Imaging the origins of organic coating degradation and blistering caused by electrolyte immersion assisted by SECM, Electroanalysis, 2009, 21, p 2569–2574CrossRef
7.
go back to reference Y. Shao, C. Jia, G. Meng, T. Zhang, and F. Wang, The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel, Corros. Sci., 2009, 51, p 371–379CrossRef Y. Shao, C. Jia, G. Meng, T. Zhang, and F. Wang, The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel, Corros. Sci., 2009, 51, p 371–379CrossRef
8.
go back to reference L. Ejanstam, M. Tuominen, J. Haapanen, J.M. Makela, J. Pan, A. Swerin, and P.M. Claesson, Long-term corrosion protection by a thin nano-composite coating, Appl. Surf. Sci., 2015, 357, p 2333–2342CrossRef L. Ejanstam, M. Tuominen, J. Haapanen, J.M. Makela, J. Pan, A. Swerin, and P.M. Claesson, Long-term corrosion protection by a thin nano-composite coating, Appl. Surf. Sci., 2015, 357, p 2333–2342CrossRef
9.
go back to reference R.M. Souto, Y.G. Garcia, J. Izquierdo, and S. Gonzalez, Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments, Corros. Sci., 2010, 52, p 748–753CrossRef R.M. Souto, Y.G. Garcia, J. Izquierdo, and S. Gonzalez, Examination of organic coatings on metallic substrates by scanning electrochemical microscopy in feedback mode: Revealing the early stages of coating breakdown in corrosive environments, Corros. Sci., 2010, 52, p 748–753CrossRef
10.
go back to reference B.K. Panigrahi, S. Srikanth, and G. Sahoo, Effect of alloying element on the tensile properties, microstructure, and corrosion resistance of reinforcing bar steel, J. Mater. Eng. Perform., 2009, 18, p 1102–1108CrossRef B.K. Panigrahi, S. Srikanth, and G. Sahoo, Effect of alloying element on the tensile properties, microstructure, and corrosion resistance of reinforcing bar steel, J. Mater. Eng. Perform., 2009, 18, p 1102–1108CrossRef
11.
go back to reference Q. Wu, Z. Zhang, X. Dong, and J. Yang, Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environment, Corros. Sci., 2013, 75, p 400–408CrossRef Q. Wu, Z. Zhang, X. Dong, and J. Yang, Corrosion behavior of low-alloy steel containing 1% chromium in CO2 environment, Corros. Sci., 2013, 75, p 400–408CrossRef
12.
go back to reference P.K. Samantaroy, G. Suresh, N.K. Krishna, and U.K. Mudali, Corrosion behavior of alloy 600 in simulated nuclear high level waste medium, J. Mater. Eng. Perform., 2013, 22, p 1041–1053CrossRef P.K. Samantaroy, G. Suresh, N.K. Krishna, and U.K. Mudali, Corrosion behavior of alloy 600 in simulated nuclear high level waste medium, J. Mater. Eng. Perform., 2013, 22, p 1041–1053CrossRef
13.
go back to reference S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Corrosion of alloy steel containing 2% chromium in CO2 environments, Corros. Sci., 2012, 63, p 246–258CrossRef S. Guo, L. Xu, L. Zhang, W. Chang, and M. Lu, Corrosion of alloy steel containing 2% chromium in CO2 environments, Corros. Sci., 2012, 63, p 246–258CrossRef
14.
go back to reference P.K. Samantaroy, G. Suresh, and U.K. Mudali, Effect of heat treatment on pitting corrosion resistance of nickel based super alloys in acidic chloride medium, Int. J. Mater. Sci., 2013, 3, p 170–178CrossRef P.K. Samantaroy, G. Suresh, and U.K. Mudali, Effect of heat treatment on pitting corrosion resistance of nickel based super alloys in acidic chloride medium, Int. J. Mater. Sci., 2013, 3, p 170–178CrossRef
15.
go back to reference Y.H. Qian, D. Niu, J.J. Xu, and M.S. Li, The influence of chromium content on the electrochemical behavior of weathering steels, Corros. Sci., 2013, 71, p 72–77CrossRef Y.H. Qian, D. Niu, J.J. Xu, and M.S. Li, The influence of chromium content on the electrochemical behavior of weathering steels, Corros. Sci., 2013, 71, p 72–77CrossRef
16.
go back to reference B.B. Katemann, A. Schulte, E.J. Calvo, M.K. Hep, and W. Schuhmann, Localized electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy, Electrochem. Commun., 2002, 4, p 134–138CrossRef B.B. Katemann, A. Schulte, E.J. Calvo, M.K. Hep, and W. Schuhmann, Localized electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy, Electrochem. Commun., 2002, 4, p 134–138CrossRef
17.
go back to reference C. Gabrielli, S. Joiret, M. Keddam, N. Portail, P. Rousseau, and V. Vivier, Single pit on iron generated by SECM An electrochemical impedance spectroscopy investigation, Electrochim. Acta, 2008, 53, p 7539–7548CrossRef C. Gabrielli, S. Joiret, M. Keddam, N. Portail, P. Rousseau, and V. Vivier, Single pit on iron generated by SECM An electrochemical impedance spectroscopy investigation, Electrochim. Acta, 2008, 53, p 7539–7548CrossRef
18.
go back to reference J. Izquierdo, B.M.F. Perez, L.M. Ruiz, V. Mena, R.R. Raposo, J.J. Santana, and R.M. Souto, Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique, Electrochim. Acta, 2015, 178, p 1–10CrossRef J. Izquierdo, B.M.F. Perez, L.M. Ruiz, V. Mena, R.R. Raposo, J.J. Santana, and R.M. Souto, Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique, Electrochim. Acta, 2015, 178, p 1–10CrossRef
19.
go back to reference X. Joseph Raj and T. Nishimura, Corrosion protection performance of epoxy coated high tensile strength steel measured by scanning electrochemical microscope and electrochemical impedance spectroscopy techniques, ISIJ Int., 2014, 54, p 693–699CrossRef X. Joseph Raj and T. Nishimura, Corrosion protection performance of epoxy coated high tensile strength steel measured by scanning electrochemical microscope and electrochemical impedance spectroscopy techniques, ISIJ Int., 2014, 54, p 693–699CrossRef
20.
go back to reference A.M. Simoes, A.C. Bastos, M.G. Ferreira, Y.G. Garcia, S. Gonzalez, and R.M. Souto, Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell, Corros. Sci., 2007, 49, p 726–739CrossRef A.M. Simoes, A.C. Bastos, M.G. Ferreira, Y.G. Garcia, S. Gonzalez, and R.M. Souto, Use of SVET and SECM to study the galvanic corrosion of an iron–zinc cell, Corros. Sci., 2007, 49, p 726–739CrossRef
21.
go back to reference S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar, and I. Samajdar, Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance, Mater. Charact., 2012, 72, p 68–76CrossRef S.G. Acharyya, A. Khandelwal, V. Kain, A. Kumar, and I. Samajdar, Surface working of 304L stainless steel: Impact on microstructure, electrochemical behavior and SCC resistance, Mater. Charact., 2012, 72, p 68–76CrossRef
22.
go back to reference A. Madhankumar, N. Rajendran, and T. Nishimura, Influence of Si nanoparticles on the electrochemical behavior of organic coatings on carbon steel in chloride environment, J. Coat. Technol. Res., 2012, 9, p 609–620CrossRef A. Madhankumar, N. Rajendran, and T. Nishimura, Influence of Si nanoparticles on the electrochemical behavior of organic coatings on carbon steel in chloride environment, J. Coat. Technol. Res., 2012, 9, p 609–620CrossRef
23.
go back to reference S. Rhode, V. Kain, V.S. Raja, and G.J. Abraham, Factors affecting corrosion behavior of inclusion containing stainless steels: A scanning electrochemical microscopic study, Mater. Charact., 2013, 77, p 109–115CrossRef S. Rhode, V. Kain, V.S. Raja, and G.J. Abraham, Factors affecting corrosion behavior of inclusion containing stainless steels: A scanning electrochemical microscopic study, Mater. Charact., 2013, 77, p 109–115CrossRef
24.
go back to reference A.C. Bastos, A.M. Simoes, S. Gonzalez, Y.G. Garcia, and R.M. Souto, Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope, Electrochem. Commun., 2004, 6, p 1212–1215CrossRef A.C. Bastos, A.M. Simoes, S. Gonzalez, Y.G. Garcia, and R.M. Souto, Imaging concentration profiles of redox-active species in open-circuit corrosion processes with the scanning electrochemical microscope, Electrochem. Commun., 2004, 6, p 1212–1215CrossRef
25.
go back to reference R.M. Souto, Y.G. Garcia, D. Battistel, and S. Daniele, On the use of mercury coated tip in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron, Corros. Sci., 2012, 55, p 401–406CrossRef R.M. Souto, Y.G. Garcia, D. Battistel, and S. Daniele, On the use of mercury coated tip in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron, Corros. Sci., 2012, 55, p 401–406CrossRef
26.
go back to reference Y. Yin, L. Niu, M. Lu, W. Guo, and S. Chen, In-situ characterization of localized corrosion of stainless steel by scanning electrochemical microscopy, Appl. Surf. Sci., 2009, 255, p 9193–9199CrossRef Y. Yin, L. Niu, M. Lu, W. Guo, and S. Chen, In-situ characterization of localized corrosion of stainless steel by scanning electrochemical microscopy, Appl. Surf. Sci., 2009, 255, p 9193–9199CrossRef
27.
go back to reference J.J. Santana, J.G. Guzman, L.F. Merida, S. Gonzalez, and R.M. Souto, Visualization of the local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode, Electrochim. Acta, 2010, 55, p 4488–4494CrossRef J.J. Santana, J.G. Guzman, L.F. Merida, S. Gonzalez, and R.M. Souto, Visualization of the local degradation processes in coated metals by means of scanning electrochemical microscopy in the redox competition mode, Electrochim. Acta, 2010, 55, p 4488–4494CrossRef
28.
go back to reference X. Joseph and T. Nishimura, Scanning electrochemical microscopy for the investigation of galvanic corrosion of iron with zinc in 0.1 M NaCl solution, J. Mater. Eng. Perform., 2016, 25, p 474–486CrossRef X. Joseph and T. Nishimura, Scanning electrochemical microscopy for the investigation of galvanic corrosion of iron with zinc in 0.1 M NaCl solution, J. Mater. Eng. Perform., 2016, 25, p 474–486CrossRef
29.
go back to reference P. Sun, F.O. Laforge, and M.V. Mirkin, Scanning electrochemical microscopy in the 21st century, Phys. Chem. Chem. Phys., 2007, 9, p 802–823CrossRef P. Sun, F.O. Laforge, and M.V. Mirkin, Scanning electrochemical microscopy in the 21st century, Phys. Chem. Chem. Phys., 2007, 9, p 802–823CrossRef
30.
go back to reference J. Izquierdo, L.M. Ruiz, B.M.F. Perez, L.F. Merida, J.J. Santana, and R.M. Souto, Imaging local surface reactivity on stainless steels 304 and 316 in Acid chloride solution using scanning electrochemical microscopy and scanning vibrating electrode technique, Electrochim. Acta, 2014, 134, p 167–175CrossRef J. Izquierdo, L.M. Ruiz, B.M.F. Perez, L.F. Merida, J.J. Santana, and R.M. Souto, Imaging local surface reactivity on stainless steels 304 and 316 in Acid chloride solution using scanning electrochemical microscopy and scanning vibrating electrode technique, Electrochim. Acta, 2014, 134, p 167–175CrossRef
31.
go back to reference Y.G. Garcia, J.J. Santana, J.G. Guzman, J. Izquierdo, and S. Gonzalez, R.M., Souto, Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals, Prog. Org. Coat., 2010, 69, p 110–117CrossRef Y.G. Garcia, J.J. Santana, J.G. Guzman, J. Izquierdo, and S. Gonzalez, R.M., Souto, Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals, Prog. Org. Coat., 2010, 69, p 110–117CrossRef
32.
go back to reference R.M. Souto, Y.G. Garcia, and S. Gonzalez, Characterization of coating systems by scanning electrochemical microscopy: Surface topology and blistering, Prog. Org. Coat., 2009, 65, p 435–439CrossRef R.M. Souto, Y.G. Garcia, and S. Gonzalez, Characterization of coating systems by scanning electrochemical microscopy: Surface topology and blistering, Prog. Org. Coat., 2009, 65, p 435–439CrossRef
33.
go back to reference A. Pilbath, T. Szabo, J. Telegdi, and L. Nyikos, SECM study of steel corrosion under scratched microencapsulated epoxy resin, Prog. Org. Coat., 2012, 75, p 480–485CrossRef A. Pilbath, T. Szabo, J. Telegdi, and L. Nyikos, SECM study of steel corrosion under scratched microencapsulated epoxy resin, Prog. Org. Coat., 2012, 75, p 480–485CrossRef
34.
go back to reference X.Z. Zhang, R. Liu, K.Y. Chen, M.X. Yao, and R. Collier, Electrochemical study of corrosion behavior of wrought stellite alloys in sodium chloride and green death solutions, J. Mater. Eng. Perform., 2015, 24, p 3579–3587CrossRef X.Z. Zhang, R. Liu, K.Y. Chen, M.X. Yao, and R. Collier, Electrochemical study of corrosion behavior of wrought stellite alloys in sodium chloride and green death solutions, J. Mater. Eng. Perform., 2015, 24, p 3579–3587CrossRef
35.
go back to reference A. Madhankumar, S. Nagarajan, N. Rajendran, and T. Nishimura, EIS evaluation of protection performance of surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test, J. Solid State Electrochem., 2011, doi:10.1007/s10008-011-1623-1 A. Madhankumar, S. Nagarajan, N. Rajendran, and T. Nishimura, EIS evaluation of protection performance of surface characterization of epoxy coating with aluminum nanoparticles after wet and dry corrosion test, J. Solid State Electrochem., 2011, doi:10.​1007/​s10008-011-1623-1
36.
go back to reference A.C. Bastos, A.M. Simoes, S. Gonzalez, Y. Gonzalez-Garciıa, and R.M. Souto, Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates, Prog. Org. Coat., 2005, 53, p 177–182CrossRef A.C. Bastos, A.M. Simoes, S. Gonzalez, Y. Gonzalez-Garciıa, and R.M. Souto, Application of the scanning electrochemical microscope to the examination of organic coatings on metallic substrates, Prog. Org. Coat., 2005, 53, p 177–182CrossRef
37.
go back to reference J. Izquierdo, L. Martin-Ruiz, B.M. Fernandez-Perez, R. Rodríguez-Raposo, J.J. Santana, and R.M. Souto, Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution, J. Electroanal. Chem., 2014, 728, p 148–157CrossRef J. Izquierdo, L. Martin-Ruiz, B.M. Fernandez-Perez, R. Rodríguez-Raposo, J.J. Santana, and R.M. Souto, Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution, J. Electroanal. Chem., 2014, 728, p 148–157CrossRef
38.
go back to reference R.M. Souto, J.J. Santana, L. Fernandez-Merida, and S. Gonzalez, Sensing electrochemical activity in polymer coated metals during the early stages of coating degradation–Effect of the polarization of the substrate, Electrochim. Acta, 2011, 56, p 9596–9601CrossRef R.M. Souto, J.J. Santana, L. Fernandez-Merida, and S. Gonzalez, Sensing electrochemical activity in polymer coated metals during the early stages of coating degradation–Effect of the polarization of the substrate, Electrochim. Acta, 2011, 56, p 9596–9601CrossRef
39.
go back to reference B.M. Fernandez-Perez, J. Izquierdo, S. Gonzalez, and R.M. Souto, Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel, J. Solid State Electrochem., 2014, 18, p 2983–2992CrossRef B.M. Fernandez-Perez, J. Izquierdo, S. Gonzalez, and R.M. Souto, Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel, J. Solid State Electrochem., 2014, 18, p 2983–2992CrossRef
41.
go back to reference T. Balusamy and T. Nishimura, In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy, Electrochim. Acta, 2016, 199, p 305–313CrossRef T. Balusamy and T. Nishimura, In-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in simulated pore solution containing varying percentage of chloride ions by localized electrochemical impedance spectroscopy, Electrochim. Acta, 2016, 199, p 305–313CrossRef
42.
go back to reference R.S.S. Guzman, J.R. Vilche, and A.J. Arvia, The potentiodynamic behavior of iron in alkaline solutions, Electrochim. Acta, 1979, 24, p 395–403CrossRef R.S.S. Guzman, J.R. Vilche, and A.J. Arvia, The potentiodynamic behavior of iron in alkaline solutions, Electrochim. Acta, 1979, 24, p 395–403CrossRef
43.
go back to reference E. Volpi, A. Olietti, M. Stefanoni, and S.P. Trasatti, Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment, J. Electroanal. Chem., 2015, 736, p 38–46CrossRef E. Volpi, A. Olietti, M. Stefanoni, and S.P. Trasatti, Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment, J. Electroanal. Chem., 2015, 736, p 38–46CrossRef
44.
go back to reference Q. Zhang, J. Wu, W. Zheng, J. Wang, J. Chen, X. Yang, and A. Li, Characterization of rust layer formed on low alloy steel exposed in marine atmosphere, J. Mater. Sci. Technol., 2002, 18, p 455–458 Q. Zhang, J. Wu, W. Zheng, J. Wang, J. Chen, X. Yang, and A. Li, Characterization of rust layer formed on low alloy steel exposed in marine atmosphere, J. Mater. Sci. Technol., 2002, 18, p 455–458
45.
go back to reference A. Kojijan, C. Donik, and M. Jenko, The corrosion behavior of duplex stainless steel in chloride solution studied by XPS, Mater. Technol., 2009, 43, p 195–199 A. Kojijan, C. Donik, and M. Jenko, The corrosion behavior of duplex stainless steel in chloride solution studied by XPS, Mater. Technol., 2009, 43, p 195–199
46.
go back to reference T.E. Graedel and R.P. Frankenthal, Corrosion mechanism for iron and low alloy steels exposed to the atmosphere, J. Electrochem. Soc., 1990, 137, p 2386–2394CrossRef T.E. Graedel and R.P. Frankenthal, Corrosion mechanism for iron and low alloy steels exposed to the atmosphere, J. Electrochem. Soc., 1990, 137, p 2386–2394CrossRef
47.
go back to reference H. Takabe, M. Veda, and S. Fujimoto, Corrosion behavior under black deposit on low Cr bearing steels in NaCl completion fluids, ISIJ Int., 2008, 48, p 1758–1765CrossRef H. Takabe, M. Veda, and S. Fujimoto, Corrosion behavior under black deposit on low Cr bearing steels in NaCl completion fluids, ISIJ Int., 2008, 48, p 1758–1765CrossRef
48.
go back to reference S.A. Park, D.P. Le, and J.G. Kim, Alloying effect of chromium on the corrosion behavior of low-alloy steels, Mater. Trans., 2013, 54, p 1770–1778CrossRef S.A. Park, D.P. Le, and J.G. Kim, Alloying effect of chromium on the corrosion behavior of low-alloy steels, Mater. Trans., 2013, 54, p 1770–1778CrossRef
49.
go back to reference P. Marcus, Surface science approach of corrosion phenomena, Electrochim. Acta, 1998, 43, p 109–118CrossRef P. Marcus, Surface science approach of corrosion phenomena, Electrochim. Acta, 1998, 43, p 109–118CrossRef
Metadata
Title
SECM Study of Effect of Chromium Content on the Localized Corrosion Behavior of Low-Alloy Steels in Chloride Environment
Authors
K. Indira
T. Nishimura
Publication date
08-08-2016
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2016
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2280-4

Other articles of this Issue 10/2016

Journal of Materials Engineering and Performance 10/2016 Go to the issue

Premium Partners