Skip to main content
Top
Published in: Cognitive Computation 2/2018

24-11-2017

Semantic Scene Mapping with Spatio-temporal Deep Neural Network for Robotic Applications

Published in: Cognitive Computation | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Semantic scene mapping is a challenge and significant task for robotic application, such as autonomous navigation and robot-environment interaction. In this paper, we propose a semantic pixel-wise mapping system for potential robotic applications. The system includes a novel spatio-temporal deep neural network for semantic segmentation and a Simultaneous Localisation and Mapping (SLAM) algorithm for 3D point cloud map. Their combination yields a 3D semantic pixel-wise map. The proposed network consists of Convolutional Neural Networks (CNNs) with two streams: spatial stream with images as the input and temporal stream with image differences as the input. Due to the use of both spatial and temporal information, it is called spatio-temporal deep neural network, which shows a better performance in both accuracy and robustness in semantic segmentation. Further, only keyframes are selected for semantic segmentation in order to reduce the computational burden for video streams and improve the real-time performance. Based on the result of semantic segmentation, a 3D semantic map is built up by using the 3D point cloud map from a SLAM algorithm. The proposed spatio-temporal neural network is evaluated on both Cityscapes benchmark (a public dataset) and Essex Indoor benchmark (a dataset we labelled ourselves manually). Compared with the state-of-the-art spatial only neural networks, the proposed network achieves better performances in both pixel-wise accuracy and Intersection over Union (IoU) for scene segmentation. The constructed 3D semantic map with our methods is accurate and meaningful for robotic applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 1–9.
2.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 770–8.
3.
go back to reference Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–40. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2015. p. 3431–40.
4.
5.
go back to reference Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 2006; 13(2):99–110.CrossRef Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 2006; 13(2):99–110.CrossRef
6.
go back to reference Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: part II. IEEE Robot Autom Mag 2006; 13(3):108–17.CrossRef Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: part II. IEEE Robot Autom Mag 2006; 13(3):108–17.CrossRef
7.
go back to reference Xie J, Yu L, Zhu L, Chen X. Semantic image segmentation method with multiple adjacency trees and multiscale features. Cogn Comput 2017;9(2):168–79.CrossRef Xie J, Yu L, Zhu L, Chen X. Semantic image segmentation method with multiple adjacency trees and multiscale features. Cogn Comput 2017;9(2):168–79.CrossRef
8.
go back to reference Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd international conference on learning representations; 2015. p. 1–14. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd international conference on learning representations; 2015. p. 1–14.
9.
10.
go back to reference Badrinarayanan V, Kendall A, Cipolla R. 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.00561. Badrinarayanan V, Kendall A, Cipolla R. 2015. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv:1511.​00561.
11.
go back to reference Kendall A, Badrinarayanan V, Cipolla R. 2015. Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv:1511.02680. Kendall A, Badrinarayanan V, Cipolla R. 2015. Bayesian segnet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv:1511.​02680.
12.
go back to reference Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH. Conditional random fields as recurrent neural networks. Proceedings of the IEEE international conference on computer vision; 2015. p. 1529–37. Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Huang C, Torr PH. Conditional random fields as recurrent neural networks. Proceedings of the IEEE international conference on computer vision; 2015. p. 1529–37.
13.
go back to reference Arnab A, Jayasumana S, Zheng S, Torr PH. Higher order conditional random fields in deep neural networks. European conference on computer vision. Springer; 2016. p. 524–40. Arnab A, Jayasumana S, Zheng S, Torr PH. Higher order conditional random fields in deep neural networks. European conference on computer vision. Springer; 2016. p. 524–40.
14.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE; 2009. p. 248–55. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. IEEE conference on computer vision and pattern recognition, 2009. CVPR 2009. IEEE; 2009. p. 248–55.
15.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.7062. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2014. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv:1412.​7062.
16.
go back to reference Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2016. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.00915. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2016. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv:1606.​00915.
17.
go back to reference Chen L-C, Yang Y, Wang J, Xu W, Yuille AL. Attention to scale: scale-aware semantic image segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3640–9. Chen L-C, Yang Y, Wang J, Xu W, Yuille AL. Attention to scale: scale-aware semantic image segmentation. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3640–9.
18.
go back to reference Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes challenge: a retrospective. Int J Comput Vis 2015;111(1):98–136.CrossRef Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A. The pascal visual object classes challenge: a retrospective. Int J Comput Vis 2015;111(1):98–136.CrossRef
19.
go back to reference Wu Z, Shen C, Hengel AVD. 2016. High-performance semantic segmentation using very deep fully convolutional networks. arXiv:1604.04339. Wu Z, Shen C, Hengel AVD. 2016. High-performance semantic segmentation using very deep fully convolutional networks. arXiv:1604.​04339.
20.
go back to reference Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–23. Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, Franke U, Roth S, Schiele B. The cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 3213–23.
21.
go back to reference Wu Z, Shen C, Hengel AVD. 2016. Wider or deeper: revisiting the resnet model for visual recognition. arXiv:1611.10080. Wu Z, Shen C, Hengel AVD. 2016. Wider or deeper: revisiting the resnet model for visual recognition. arXiv:1611.​10080.
22.
go back to reference Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. 2016. Semantic understanding of scenes through the ade20k dataset. arXiv:1608.05442. Zhou B, Zhao H, Puig X, Fidler S, Barriuso A, Torralba A. 2016. Semantic understanding of scenes through the ade20k dataset. arXiv:1608.​05442.
23.
go back to reference Tu Z, Abel A, Zhang L, Luo B, Hussain A. A new spatio-temporal saliency-based video object segmentation. Cogn Comput 2016;8(4):629–647.CrossRef Tu Z, Abel A, Zhang L, Luo B, Hussain A. A new spatio-temporal saliency-based video object segmentation. Cogn Comput 2016;8(4):629–647.CrossRef
24.
go back to reference Doborjeh ZG, Doborjeh MG, Kasabov N. Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cogn Comput, 2017:1–14. Doborjeh ZG, Doborjeh MG, Kasabov N. Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cogn Comput, 2017:1–14.
25.
go back to reference Wang S, Clark R, Wen H, Trigoni N. DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. 2017 IEEE international conference on robotics and automation (ICRA). IEEE; 2017. p. 2043–50. Wang S, Clark R, Wen H, Trigoni N. DeepVO: towards end-to-end visual odometry with deep recurrent convolutional neural networks. 2017 IEEE international conference on robotics and automation (ICRA). IEEE; 2017. p. 2043–50.
26.
go back to reference Wang L, Xiong Y, Wang Z, Qiao Y. 2015. Towards good practices for very deep two-stream convnets. arXiv:1507.02159. Wang L, Xiong Y, Wang Z, Qiao Y. 2015. Towards good practices for very deep two-stream convnets. arXiv:1507.​02159.
27.
go back to reference Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L. Temporal segment networks: towards good practices for deep action recognition. European conference on computer vision. Springer; 2016. p. 20–36. Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L. Temporal segment networks: towards good practices for deep action recognition. European conference on computer vision. Springer; 2016. p. 20–36.
28.
go back to reference Li R, Liu Q, Gui J, Gu D, Hu H. 2017. Indoor relocalization in challenging environments with dual-stream convolutional neural networks. IEEE Trans Autom Sci Eng. Li R, Liu Q, Gui J, Gu D, Hu H. 2017. Indoor relocalization in challenging environments with dual-stream convolutional neural networks. IEEE Trans Autom Sci Eng.
29.
go back to reference Eitel A, Springenberg JT, Spinello L, Riedmiller M, Burgard W. Multimodal deep learning for robust RGB-d object recognition. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2015. p. 681–7. Eitel A, Springenberg JT, Spinello L, Riedmiller M, Burgard W. Multimodal deep learning for robust RGB-d object recognition. 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE; 2015. p. 681–7.
30.
go back to reference Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. 2015 IEEE international conference on robotics and automation (ICRA). IEEE; 2015. p. 1329–35. Schwarz M, Schulz H, Behnke S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features. 2015 IEEE international conference on robotics and automation (ICRA). IEEE; 2015. p. 1329–35.
31.
go back to reference Hazirbas C, Ma L, Domokos C, Cremers D. Fusenet: incorporating depth into semantic segmentation via fusion-based CNN architecture. Proceedings of ACCV; 2016. Hazirbas C, Ma L, Domokos C, Cremers D. Fusenet: incorporating depth into semantic segmentation via fusion-based CNN architecture. Proceedings of ACCV; 2016.
32.
go back to reference Valada A, Oliveira G, Brox T, Burgard W. Towards robust semantic segmentation using deep fusion. Robotics: science and systems (RSS 2016) workshop, are the sceptics right? Limits and potentials of deep learning in robotics; 2016. Valada A, Oliveira G, Brox T, Burgard W. Towards robust semantic segmentation using deep fusion. Robotics: science and systems (RSS 2016) workshop, are the sceptics right? Limits and potentials of deep learning in robotics; 2016.
33.
go back to reference Valada A, Vertens J, Dhall A, Burgard W. Adapnet: adaptive semantic segmentation in adverse environmental conditions. 2017 IEEE international conference on robotics and automation (ICRA). IEEE; 2017. Valada A, Vertens J, Dhall A, Burgard W. Adapnet: adaptive semantic segmentation in adverse environmental conditions. 2017 IEEE international conference on robotics and automation (ICRA). IEEE; 2017.
34.
go back to reference Hülse M, McBride S, Lee M. Fast learning mapping schemes for robotic hand–eye coordination. Cogn Comput 2010;2(1):1–16.CrossRef Hülse M, McBride S, Lee M. Fast learning mapping schemes for robotic hand–eye coordination. Cogn Comput 2010;2(1):1–16.CrossRef
35.
go back to reference Salas-Moreno RF, Glocken B, Kelly PH, Davison AJ. Dense planar slam. 2014 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE; 2014. p. 157–64. Salas-Moreno RF, Glocken B, Kelly PH, Davison AJ. Dense planar slam. 2014 IEEE international symposium on mixed and augmented reality (ISMAR). IEEE; 2014. p. 157–64.
36.
go back to reference Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH, Davison AJ. Slam++: simultaneous localisation and mapping at the level of objects. Proceedings of the IEEE conference on computer vision and pattern recognition; 2013. p. 1352–9. Salas-Moreno RF, Newcombe RA, Strasdat H, Kelly PH, Davison AJ. Slam++: simultaneous localisation and mapping at the level of objects. Proceedings of the IEEE conference on computer vision and pattern recognition; 2013. p. 1352–9.
37.
go back to reference Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. Proceedings of the ACM international conference on multimedia. ACM; 2014. p. 675–8. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: convolutional architecture for fast feature embedding. Proceedings of the ACM international conference on multimedia. ACM; 2014. p. 675–8.
38.
go back to reference Mur-Artal R, Tardós JD. Fast relocalisation and loop closing in keyframe-based SLAM. 2014 IEEE international conference on robotics and automation (ICRA). IEEE; 2014. p. 846–53. Mur-Artal R, Tardós JD. Fast relocalisation and loop closing in keyframe-based SLAM. 2014 IEEE international conference on robotics and automation (ICRA). IEEE; 2014. p. 846–53.
39.
go back to reference Mur-Artal R, Montiel J, Tardos JD. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 2015;31(5):1147–63.CrossRef Mur-Artal R, Montiel J, Tardos JD. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans Robot 2015;31(5):1147–63.CrossRef
Metadata
Title
Semantic Scene Mapping with Spatio-temporal Deep Neural Network for Robotic Applications
Publication date
24-11-2017
Published in
Cognitive Computation / Issue 2/2018
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-017-9526-9

Other articles of this Issue 2/2018

Cognitive Computation 2/2018 Go to the issue

Premium Partner