Skip to main content
Top

2019 | OriginalPaper | Chapter

15. Shape-Memory Polymers

Authors : Magdalena Mazurek-Budzyńska, Muhammad Yasar Razzaq, Marc Behl, Andreas Lendlein

Published in: Functional Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple- and multi-shape effects (TSE/MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)CrossRef A. Lendlein, S. Kelch, Shape-memory polymers. Angew. Chem. Int. Ed. 41, 2034–2057 (2002)CrossRef
2.
go back to reference K.K. Julich-Gruner, C. Löwenberg, A.T. Neffe, M. Behl, A. Lendlein, Recent trends in the chemistry of shape-memory polymers. Macromol. Chem. Phys. 214, 527–536 (2013)CrossRef K.K. Julich-Gruner, C. Löwenberg, A.T. Neffe, M. Behl, A. Lendlein, Recent trends in the chemistry of shape-memory polymers. Macromol. Chem. Phys. 214, 527–536 (2013)CrossRef
3.
go back to reference C. Wischke, A.T. Neffe, A. Lendlein, Controlled drug release from biodegradable shape-memory polymers. Adv. Polym. Sci. 226, 177–205 (2010)CrossRef C. Wischke, A.T. Neffe, A. Lendlein, Controlled drug release from biodegradable shape-memory polymers. Adv. Polym. Sci. 226, 177–205 (2010)CrossRef
4.
go back to reference C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers – The role of morphology, processing effects, and matrix degradation. Expert Opin. Drug. Deliv. 10, 1193–1205 (2013)CrossRefPubMed C. Wischke, M. Behl, A. Lendlein, Drug-releasing shape-memory polymers – The role of morphology, processing effects, and matrix degradation. Expert Opin. Drug. Deliv. 10, 1193–1205 (2013)CrossRefPubMed
5.
go back to reference A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010)CrossRefPubMed A. Lendlein, M. Behl, B. Hiebl, C. Wischke, Shape-memory polymers as a technology platform for biomedical applications. Expert Rev. Med. Devices 7, 357–379 (2010)CrossRefPubMed
6.
go back to reference M. Behl, J. Zotzmann, A. Lendlein, Shape-memory polymers and shape-changing polymers. Adv. Polym. Sci. 226, 1–40 (2010) M. Behl, J. Zotzmann, A. Lendlein, Shape-memory polymers and shape-changing polymers. Adv. Polym. Sci. 226, 1–40 (2010)
7.
go back to reference M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRefPubMed M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers. Adv. Mater. 22, 3388–3410 (2010)CrossRefPubMed
8.
go back to reference Q. Zhao, M. Behl, A. Lendlein, Shape-memory polymers with multiple transitions: Complex actively moving polymers. Soft Matter 9, 1744–1755 (2013)CrossRef Q. Zhao, M. Behl, A. Lendlein, Shape-memory polymers with multiple transitions: Complex actively moving polymers. Soft Matter 9, 1744–1755 (2013)CrossRef
9.
go back to reference M. Behl, A. Lendlein, Actively moving polymers. Soft Matter 3, 58–67 (2007)CrossRef M. Behl, A. Lendlein, Actively moving polymers. Soft Matter 3, 58–67 (2007)CrossRef
10.
go back to reference M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 49-50, 3–33 (2015)CrossRef M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments. Prog. Polym. Sci. 49-50, 3–33 (2015)CrossRef
11.
go back to reference P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRef P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 11, 521–526 (1943)CrossRef
12.
go back to reference W. Wagermaier, K. Kratz, M. Heuchel, A. Lendlein, Characterization methods for shape-memory polymers. Adv. Polym. Sci. 226, 97–145 (2010)CrossRef W. Wagermaier, K. Kratz, M. Heuchel, A. Lendlein, Characterization methods for shape-memory polymers. Adv. Polym. Sci. 226, 97–145 (2010)CrossRef
13.
go back to reference T. Sauter, M. Heuchel, K. Kratz, A. Lendlein, Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym. Rev. 53, 6–40 (2013)CrossRef T. Sauter, M. Heuchel, K. Kratz, A. Lendlein, Quantifying the shape-memory effect of polymers by cyclic thermomechanical tests. Polym. Rev. 53, 6–40 (2013)CrossRef
14.
go back to reference M. Heuchel, T. Sauter, K. Kratz, A. Lendlein, Thermally induced shape-memory effects in polymers: Quantification and related modeling approaches. J. Polym. Sci. B Polym. Phys. 51, 621–637 (2013)CrossRef M. Heuchel, T. Sauter, K. Kratz, A. Lendlein, Thermally induced shape-memory effects in polymers: Quantification and related modeling approaches. J. Polym. Sci. B Polym. Phys. 51, 621–637 (2013)CrossRef
15.
go back to reference I.S. Kolesov, K. Kratz, A. Lendlein, H.-J. Radusch, Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes. Polymer 50, 5490–5498 (2009)CrossRef I.S. Kolesov, K. Kratz, A. Lendlein, H.-J. Radusch, Kinetics and dynamics of thermally-induced shape-memory behavior of crosslinked short-chain branched polyethylenes. Polymer 50, 5490–5498 (2009)CrossRef
16.
go back to reference A. Maksimkin, S. Kaloshkin, M. Zadorozhnyy, V. Tcherdyntsev, Comparison of shape memory effect in UHMWPE for bulk and fiber state. J. Alloys Compd. 586, S214–S217 (2014)CrossRef A. Maksimkin, S. Kaloshkin, M. Zadorozhnyy, V. Tcherdyntsev, Comparison of shape memory effect in UHMWPE for bulk and fiber state. J. Alloys Compd. 586, S214–S217 (2014)CrossRef
17.
go back to reference J. Zhao, M. Chen, X. Wang, X. Zhao, Z. Wang, Z.-M. Dang, L. Ma, G.-H. Hu, F. Chen, Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 5, 5550–5556 (2013)CrossRefPubMed J. Zhao, M. Chen, X. Wang, X. Zhao, Z. Wang, Z.-M. Dang, L. Ma, G.-H. Hu, F. Chen, Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 5, 5550–5556 (2013)CrossRefPubMed
18.
go back to reference A.L. Sisson, D. Ekinci, A. Lendlein, The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer 54, 4333–4350 (2013)CrossRef A.L. Sisson, D. Ekinci, A. Lendlein, The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer 54, 4333–4350 (2013)CrossRef
19.
go back to reference H.Y. Lee, H.M. Jeong, J.S. Lee, B.K. Kim, Study on the shape memory polyamides. Synthesis and thermomechanical properties of polycaprolactone-polyamide block copolymer. Polym. J. 32, 23–28 (2000)CrossRef H.Y. Lee, H.M. Jeong, J.S. Lee, B.K. Kim, Study on the shape memory polyamides. Synthesis and thermomechanical properties of polycaprolactone-polyamide block copolymer. Polym. J. 32, 23–28 (2000)CrossRef
20.
go back to reference G. Rabani, H. Luftmann, A. Kraft, Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments. Polymer 47, 4251–4260 (2006)CrossRef G. Rabani, H. Luftmann, A. Kraft, Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments. Polymer 47, 4251–4260 (2006)CrossRef
21.
go back to reference H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50, 1596–1601 (2009)CrossRef H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer 50, 1596–1601 (2009)CrossRef
22.
go back to reference S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 5, 1519–1530 (2009)CrossRefPubMed S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater. 5, 1519–1530 (2009)CrossRefPubMed
23.
go back to reference Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A 40, 1661–1672 (2009)CrossRef Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A 40, 1661–1672 (2009)CrossRef
24.
go back to reference X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 64, 94–103 (2016)CrossRefPubMed X. Jing, H.-Y. Mi, H.-X. Huang, L.-S. Turng, Shape memory thermoplastic polyurethane (TPU)/poly(ε-caprolactone) (PCL) blends as self-knotting sutures. J. Mech. Behav. Biomed. Mater. 64, 94–103 (2016)CrossRefPubMed
25.
go back to reference I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, L. Peponi, Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97–108 (2016)CrossRef I. Navarro-Baena, V. Sessini, F. Dominici, L. Torre, J.M. Kenny, L. Peponi, Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 132, 97–108 (2016)CrossRef
26.
go back to reference M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)CrossRef M. Behl, A. Lendlein, Shape-memory polymers. Mater. Today 10, 20–28 (2007)CrossRef
27.
go back to reference J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)CrossRef J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37, 1720–1763 (2012)CrossRef
28.
go back to reference J.W. Cho, Y.C. Jung, Y.-C. Chung, B.C. Chun, Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 93, 2410–2415 (2004)CrossRef J.W. Cho, Y.C. Jung, Y.-C. Chung, B.C. Chun, Improved mechanical properties of shape-memory polyurethane block copolymers through the control of the soft-segment arrangement. J. Appl. Polym. Sci. 93, 2410–2415 (2004)CrossRef
29.
go back to reference A. Alteheld, Y. Feng, S. Kelch, A. Lendlein, Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew. Chem. Int. Ed. 44, 1188–1192 (2005)CrossRef A. Alteheld, Y. Feng, S. Kelch, A. Lendlein, Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew. Chem. Int. Ed. 44, 1188–1192 (2005)CrossRef
30.
go back to reference T. Xie, Recent advances in polymer shape memory. Polymer 52, 4985–5000 (2011)CrossRef T. Xie, Recent advances in polymer shape memory. Polymer 52, 4985–5000 (2011)CrossRef
31.
go back to reference A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld, S. Kelch, Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10, 975–982 (2009)CrossRefPubMed A. Lendlein, J. Zotzmann, Y. Feng, A. Alteheld, S. Kelch, Controlling the switching temperature of biodegradable, amorphous, shape-memory poly(rac-lactide)urethane networks by incorporation of different comonomers. Biomacromolecules 10, 975–982 (2009)CrossRefPubMed
32.
go back to reference C.P. Buckley, C. Prisacariu, A. Caraculacu, Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 48, 1388–1396 (2007)CrossRef C.P. Buckley, C. Prisacariu, A. Caraculacu, Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials. Polymer 48, 1388–1396 (2007)CrossRef
33.
go back to reference Q. Cao, P. Liu, Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polym. Bull. 57, 889–899 (2006)CrossRef Q. Cao, P. Liu, Structure and mechanical properties of shape memory polyurethane based on hyperbranched polyesters. Polym. Bull. 57, 889–899 (2006)CrossRef
34.
go back to reference L. Xue, S. Dai, Z. Li, Synthesis and characterization of three-arm poly(ε-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42, 964–972 (2009)CrossRef L. Xue, S. Dai, Z. Li, Synthesis and characterization of three-arm poly(ε-caprolactone)-based poly(ester−urethanes) with shape-memory effect at body temperature. Macromolecules 42, 964–972 (2009)CrossRef
35.
go back to reference N.-Y. Choi, A. Lendlein, Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter 3, 901–909 (2007)CrossRefPubMed N.-Y. Choi, A. Lendlein, Degradable shape-memory polymer networks from oligo[(l-lactide)-ran-glycolide]dimethacrylates. Soft Matter 3, 901–909 (2007)CrossRefPubMed
36.
go back to reference C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, K. Gall, Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008)PubMedCentralCrossRefPubMed C.M. Yakacki, R. Shandas, D. Safranski, A.M. Ortega, K. Sassaman, K. Gall, Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008)PubMedCentralCrossRefPubMed
37.
go back to reference S. Kelch, S. Steuer, A.M. Schmidt, A. Lendlein, Shape-memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8, 1018–1027 (2007)CrossRefPubMed S. Kelch, S. Steuer, A.M. Schmidt, A. Lendlein, Shape-memory polymer networks from oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8, 1018–1027 (2007)CrossRefPubMed
38.
go back to reference K.M. Lee, P.T. Knight, T. Chung, P.T. Mather, Polycaprolactone−POSS chemical/physical double networks. Macromolecules 41, 4730–4738 (2008)CrossRef K.M. Lee, P.T. Knight, T. Chung, P.T. Mather, Polycaprolactone−POSS chemical/physical double networks. Macromolecules 41, 4730–4738 (2008)CrossRef
39.
go back to reference S. Kelch, N.Y. Choi, Z. Wang, A. Lendlein, Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv. Eng. Mater. 10, 494–502 (2008)CrossRef S. Kelch, N.Y. Choi, Z. Wang, A. Lendlein, Amorphous, elastic AB copolymer networks from acrylates and poly[(l-lactide)-ran-glycolide]dimethacrylates. Adv. Eng. Mater. 10, 494–502 (2008)CrossRef
40.
go back to reference S. Chen, J. Hu, C.-W. Yuen, L. Chan, Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym. Int. 59, 529–538 (2010)CrossRef S. Chen, J. Hu, C.-W. Yuen, L. Chan, Fourier transform infrared study of supramolecular polyurethane networks containing pyridine moieties for shape memory materials. Polym. Int. 59, 529–538 (2010)CrossRef
41.
go back to reference S. Chen, J. Hu, H. Zhuo, S. Chen, Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J. Mater. Sci. 46, 5294–5304 (2011)CrossRef S. Chen, J. Hu, H. Zhuo, S. Chen, Effect of MDI–BDO hard segment on pyridine-containing shape memory polyurethanes. J. Mater. Sci. 46, 5294–5304 (2011)CrossRef
42.
go back to reference S. Chen, J. Hu, H. Zhuo, C. Yuen, L. Chan, Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51, 240–248 (2010)CrossRef S. Chen, J. Hu, H. Zhuo, C. Yuen, L. Chan, Study on the thermal-induced shape memory effect of pyridine containing supramolecular polyurethane. Polymer 51, 240–248 (2010)CrossRef
43.
go back to reference S. Chen, J. Hu, C.-w. Yuen, L. Chan, Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50, 4424–4428 (2009)CrossRef S. Chen, J. Hu, C.-w. Yuen, L. Chan, Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50, 4424–4428 (2009)CrossRef
44.
go back to reference S. Chen, H. Yuan, S. Chen, H. Yang, Z. Ge, H. Zhuo, J. Liu, Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J. Mater. Chem. A 2, 10169–10181 (2014)CrossRef S. Chen, H. Yuan, S. Chen, H. Yang, Z. Ge, H. Zhuo, J. Liu, Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J. Mater. Chem. A 2, 10169–10181 (2014)CrossRef
45.
go back to reference R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg, R.F. Lange, J.K. Lowe, E.W. Meijer, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997)CrossRefPubMed R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J. Folmer, J.H. Hirschberg, R.F. Lange, J.K. Lowe, E.W. Meijer, Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997)CrossRefPubMed
46.
go back to reference K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42, 9072–9081 (2009)CrossRef K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42, 9072–9081 (2009)CrossRef
47.
go back to reference A. Gooch, N.S. Murphy, N.H. Thomson, A.J. Wilson, Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays. Macromolecules 46, 9634–9641 (2013)PubMedCentralCrossRefPubMed A. Gooch, N.S. Murphy, N.H. Thomson, A.J. Wilson, Side-chain supramolecular polymers employing conformer independent triple hydrogen bonding arrays. Macromolecules 46, 9634–9641 (2013)PubMedCentralCrossRefPubMed
48.
go back to reference J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007)CrossRef J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Shape-memory effects in polymer networks containing reversibly associating side-groups. Adv. Mater. 19, 2851–2855 (2007)CrossRef
49.
go back to reference J. Li, C.L. Lewis, D.L. Chen, M. Anthamatten, Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44, 5336–5343 (2011)CrossRef J. Li, C.L. Lewis, D.L. Chen, M. Anthamatten, Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44, 5336–5343 (2011)CrossRef
50.
go back to reference H. Chen, Y. Li, G. Tao, L. Wang, S. Zhou, Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 7, 6637–6644 (2016)CrossRef H. Chen, Y. Li, G. Tao, L. Wang, S. Zhou, Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 7, 6637–6644 (2016)CrossRef
51.
go back to reference Y. Wu, L. Wang, X. Zhao, S. Hou, B. Guo, P.X. Ma, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104, 18–31 (2016)CrossRefPubMed Y. Wu, L. Wang, X. Zhao, S. Hou, B. Guo, P.X. Ma, Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104, 18–31 (2016)CrossRefPubMed
52.
go back to reference Y. Pan, T. Liu, J. Li, Z. Zheng, X. Ding, Y. Peng, High modulus ratio shape-memory polymers achieved by combining hydrogen bonding with controlled crosslinking. J. Polym. Sci. B Polym. Phys. 49, 1241–1245 (2011)CrossRef Y. Pan, T. Liu, J. Li, Z. Zheng, X. Ding, Y. Peng, High modulus ratio shape-memory polymers achieved by combining hydrogen bonding with controlled crosslinking. J. Polym. Sci. B Polym. Phys. 49, 1241–1245 (2011)CrossRef
53.
go back to reference Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012)CrossRefPubMed Y. Chen, A.M. Kushner, G.A. Williams, Z. Guan, Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012)CrossRefPubMed
54.
go back to reference L. Xiao, M. Wei, M. Zhan, J. Zhang, H. Xie, X. Deng, K. Yang, Y. Wang, Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5, 2231–2241 (2014)CrossRef L. Xiao, M. Wei, M. Zhan, J. Zhang, H. Xie, X. Deng, K. Yang, Y. Wang, Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5, 2231–2241 (2014)CrossRef
55.
go back to reference G. Liu, C. Guan, H. Xia, F. Guo, X. Ding, Y. Peng, Novel shape-memory polymer based on hydrogen bonding. Macromol. Rapid Commun. 27, 1100–1104 (2006)CrossRef G. Liu, C. Guan, H. Xia, F. Guo, X. Ding, Y. Peng, Novel shape-memory polymer based on hydrogen bonding. Macromol. Rapid Commun. 27, 1100–1104 (2006)CrossRef
56.
go back to reference G. Liu, W. He, Y. Peng, H. Xia, Shape-memory behavior of poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone)/poly(ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J. Polym. Res. 18, 2109–2117 (2011)CrossRef G. Liu, W. He, Y. Peng, H. Xia, Shape-memory behavior of poly(methyl methacrylate-co-N-vinyl-2-pyrrolidone)/poly(ethylene glycol) semi-interpenetrating polymer networks based on hydrogen bonding. J. Polym. Res. 18, 2109–2117 (2011)CrossRef
57.
go back to reference H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 5, 5168–5174 (2014)CrossRef H. Chen, Y. Li, Y. Liu, T. Gong, L. Wang, S. Zhou, Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 5, 5168–5174 (2014)CrossRef
58.
go back to reference G. Liu, X. Ding, Y. Cao, Z. Zheng, Y. Peng, Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37, 2228–2232 (2004)CrossRef G. Liu, X. Ding, Y. Cao, Z. Zheng, Y. Peng, Shape memory of hydrogen-bonded polymer network/poly(ethylene glycol) complexes. Macromolecules 37, 2228–2232 (2004)CrossRef
59.
go back to reference J.D. Merline, C.P.R. Nair, C. Gouri, T. Shrisudha, K.N. Ninan, Shape memory characterization of polytetra methylene oxide/poly (acrylic acid-co-acrylonitrile) complexed gel. J. Mater. Sci. 42, 5897–5902 (2007)CrossRef J.D. Merline, C.P.R. Nair, C. Gouri, T. Shrisudha, K.N. Ninan, Shape memory characterization of polytetra methylene oxide/poly (acrylic acid-co-acrylonitrile) complexed gel. J. Mater. Sci. 42, 5897–5902 (2007)CrossRef
60.
go back to reference J. Dong, R.A. Weiss, Effect of crosslinking on shape-memory behavior of zinc stearate/ionomer compounds. Macromol. Chem. Phys. 214, 1238–1246 (2013)CrossRef J. Dong, R.A. Weiss, Effect of crosslinking on shape-memory behavior of zinc stearate/ionomer compounds. Macromol. Chem. Phys. 214, 1238–1246 (2013)CrossRef
61.
go back to reference R.A. Weiss, E. Izzo, S. Mandelbaum, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41, 2978–2980 (2008)CrossRef R.A. Weiss, E. Izzo, S. Mandelbaum, New design of shape memory polymers: Mixtures of an elastomeric ionomer and low molar mass fatty acids and their salts. Macromolecules 41, 2978–2980 (2008)CrossRef
62.
go back to reference J. Dong, R.A. Weiss, Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44, 8871–8879 (2011)CrossRef J. Dong, R.A. Weiss, Shape memory behavior of zinc oleate-filled elastomeric ionomers. Macromolecules 44, 8871–8879 (2011)CrossRef
63.
go back to reference S.-I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer 48, 1830–1834 (2007)CrossRef S.-I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material. Polymer 48, 1830–1834 (2007)CrossRef
64.
go back to reference Z. Wang, W. Fan, R. Tong, X. Lu, H. Xia, Thermal-healable and shape memory metallosupramolecular poly(n-butyl acrylate-co-methyl methacrylate) materials. RSC Adv. 4, 25486–25493 (2014)CrossRef Z. Wang, W. Fan, R. Tong, X. Lu, H. Xia, Thermal-healable and shape memory metallosupramolecular poly(n-butyl acrylate-co-methyl methacrylate) materials. RSC Adv. 4, 25486–25493 (2014)CrossRef
65.
go back to reference J.R. Kumpfer, S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133, 12866 (2011)CrossRefPubMed J.R. Kumpfer, S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133, 12866 (2011)CrossRefPubMed
66.
go back to reference F. Xie, C. Huang, F. Wang, L. Huang, R.A. Weiss, J. Leng, Y. Liu, Carboxyl-terminated polybutadiene–poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules 49, 7322–7330 (2016)CrossRef F. Xie, C. Huang, F. Wang, L. Huang, R.A. Weiss, J. Leng, Y. Liu, Carboxyl-terminated polybutadiene–poly(styrene-co-4-vinylpyridine) supramolecular thermoplastic elastomers and their shape memory behavior. Macromolecules 49, 7322–7330 (2016)CrossRef
67.
go back to reference P. Zhang, M. Behl, X. Peng, M.Y. Razzaq, A. Lendlein, Ultrasonic cavitation induced shape-memory effect in porous polymer networks. Macromol. Rapid Commun. 37, 1897–1903 (2016)CrossRefPubMed P. Zhang, M. Behl, X. Peng, M.Y. Razzaq, A. Lendlein, Ultrasonic cavitation induced shape-memory effect in porous polymer networks. Macromol. Rapid Commun. 37, 1897–1903 (2016)CrossRefPubMed
68.
go back to reference Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79–120 (2015)CrossRef Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49–50, 79–120 (2015)CrossRef
69.
go back to reference G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, T. Xie, Exploring dynamic equilibrium of Diels–Alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 5, 805–808 (2016)CrossRef G. Zhang, Q. Zhao, L. Yang, W. Zou, X. Xi, T. Xie, Exploring dynamic equilibrium of Diels–Alder reaction for solid state plasticity in remoldable shape memory polymer network. ACS Macro Lett. 5, 805–808 (2016)CrossRef
70.
go back to reference M. Yamashiro, K. Inoue, M. Iji, Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008)CrossRef M. Yamashiro, K. Inoue, M. Iji, Recyclable shape-memory and mechanical strength of poly(lactic acid) compounds cross-linked by thermo-reversible Diels-Alder reaction. Polym. J. 40, 657–662 (2008)CrossRef
71.
go back to reference K. Inoue, M. Yamashiro, M. Iji, Recyclable shape-memory polymer: Poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. J. Appl. Polym. Sci. 112, 876–885 (2009)CrossRef K. Inoue, M. Yamashiro, M. Iji, Recyclable shape-memory polymer: Poly(lactic acid) crosslinked by a thermoreversible Diels–Alder reaction. J. Appl. Polym. Sci. 112, 876–885 (2009)CrossRef
72.
go back to reference J.-M. Raquez, S. Vanderstappen, F. Meyer, P. Verge, M. Alexandre, J.-M. Thomassin, C. Jérôme, P. Dubois, Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011)CrossRefPubMed J.-M. Raquez, S. Vanderstappen, F. Meyer, P. Verge, M. Alexandre, J.-M. Thomassin, C. Jérôme, P. Dubois, Design of cross-linked semicrystalline poly(ε-caprolactone)-based networks with one-way and two-way shape-memory properties through Diels–Alder reactions. Chem. Eur. J. 17, 10135–10143 (2011)CrossRefPubMed
73.
go back to reference T. Defize, R. Riva, C. Jérôme, M. Alexandre, Multifunctional poly(ϵ-caprolactone)-forming networks by Diels–Alder cycloaddition: Effect of the adduct on the shape-memory properties. Macromol. Chem. Phys. 213, 187–197 (2012)CrossRef T. Defize, R. Riva, C. Jérôme, M. Alexandre, Multifunctional poly(ϵ-caprolactone)-forming networks by Diels–Alder cycloaddition: Effect of the adduct on the shape-memory properties. Macromol. Chem. Phys. 213, 187–197 (2012)CrossRef
74.
go back to reference T. Defize, R. Riva, J.M. Raquez, P. Dubois, C. Jerome, M. Alexandre, Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid Commun. 32, 1264–1269 (2011)CrossRefPubMed T. Defize, R. Riva, J.M. Raquez, P. Dubois, C. Jerome, M. Alexandre, Thermoreversibly crosslinked poly(epsilon-caprolactone) as recyclable shape-memory polymer network. Macromol. Rapid Commun. 32, 1264–1269 (2011)CrossRefPubMed
75.
go back to reference J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 3, 1390–1393 (2012)CrossRef J. Zhang, Y. Niu, C. Huang, L. Xiao, Z. Chen, K. Yang, Y. Wang, Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym. Chem. 3, 1390–1393 (2012)CrossRef
76.
go back to reference T. Defize, R. Riva, J.-M. Thomassin, C. Jérôme, M. Alexandre, Thermo-reversible reactions for the preparation of smart materials: Recyclable covalently-crosslinked shape memory polymers. Macromol. Symp. 309–310, 154–161 (2011)CrossRef T. Defize, R. Riva, J.-M. Thomassin, C. Jérôme, M. Alexandre, Thermo-reversible reactions for the preparation of smart materials: Recyclable covalently-crosslinked shape memory polymers. Macromol. Symp. 309–310, 154–161 (2011)CrossRef
77.
go back to reference G. Rivero, L.-T.T. Nguyen, X.K.D. Hillewaere, F.E. Du Prez, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)CrossRef G. Rivero, L.-T.T. Nguyen, X.K.D. Hillewaere, F.E. Du Prez, One-pot thermo-remendable shape memory polyurethanes. Macromolecules 47, 2010–2018 (2014)CrossRef
78.
go back to reference C. Toncelli, D.C. De Reus, F. Picchioni, A.A. Broekhuis, Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157–165 (2012)CrossRef C. Toncelli, D.C. De Reus, F. Picchioni, A.A. Broekhuis, Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol. Chem. Phys. 213, 157–165 (2012)CrossRef
79.
go back to reference C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013)CrossRef C. Zeng, H. Seino, J. Ren, K. Hatanaka, N. Yoshie, Bio-based furan polymers with self-healing ability. Macromolecules 46, 1794–1802 (2013)CrossRef
80.
go back to reference C. Zeng, H. Seino, J. Ren, N. Yoshie, Polymers with multishape memory controlled by local glass transition temperature. ACS Appl. Mater. Interfaces 6, 2753–2758 (2014)CrossRefPubMed C. Zeng, H. Seino, J. Ren, N. Yoshie, Polymers with multishape memory controlled by local glass transition temperature. ACS Appl. Mater. Interfaces 6, 2753–2758 (2014)CrossRefPubMed
81.
go back to reference D. Aoki, Y. Teramoto, Y. Nishio, SH-containing cellulose acetate derivatives: Preparation and characterization as a shape memory-recovery material. Biomacromolecules 8, 3749–3757 (2007)CrossRefPubMed D. Aoki, Y. Teramoto, Y. Nishio, SH-containing cellulose acetate derivatives: Preparation and characterization as a shape memory-recovery material. Biomacromolecules 8, 3749–3757 (2007)CrossRefPubMed
82.
go back to reference B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013)CrossRef B.T. Michal, C.A. Jaye, E.J. Spencer, S.J. Rowan, Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Lett. 2, 694–699 (2013)CrossRef
83.
go back to reference A. Lendlein, H.Y. Jiang, O. Junger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRefPubMed A. Lendlein, H.Y. Jiang, O. Junger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005)CrossRefPubMed
84.
go back to reference M. Nagata, Y. Sato, Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments. J. Polym. Sci. Part A: Polym. Chem. 43, 2426–2439 (2005)CrossRef M. Nagata, Y. Sato, Synthesis and properties of photocurable biodegradable multiblock copolymers based on poly(ε-caprolactone) and poly(L-lactide) segments. J. Polym. Sci. Part A: Polym. Chem. 43, 2426–2439 (2005)CrossRef
85.
go back to reference L. Wu, C. Jin, X. Sun, Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12, 235–241 (2011)CrossRefPubMed L. Wu, C. Jin, X. Sun, Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 12, 235–241 (2011)CrossRefPubMed
86.
go back to reference J.M. Rochette, V.S. Ashby, Photoresponsive polyesters for tailorable shape memory biomaterials. Macromolecules 46, 2134–2140 (2013)CrossRef J.M. Rochette, V.S. Ashby, Photoresponsive polyesters for tailorable shape memory biomaterials. Macromolecules 46, 2134–2140 (2013)CrossRef
87.
go back to reference M. Nagata, Y. Yamamoto, Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J. Polym. Sci. Part A: Polm. Chem. 47, 2422–2433 (2009)CrossRef M. Nagata, Y. Yamamoto, Synthesis and characterization of photocrosslinked poly(ε-caprolactone)s showing shape-memory properties. J. Polym. Sci. Part A: Polm. Chem. 47, 2422–2433 (2009)CrossRef
88.
go back to reference M. Nagata, Y. Yamamoto, Photocurable shape-memory copolymers of ε-caprolactone and L-lactide. Macromol. Chem. Phys. 211, 1826–1835 (2010)CrossRef M. Nagata, Y. Yamamoto, Photocurable shape-memory copolymers of ε-caprolactone and L-lactide. Macromol. Chem. Phys. 211, 1826–1835 (2010)CrossRef
89.
go back to reference J. He, Y. Zhao, Y. Zhao, Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5, 308–310 (2009)CrossRef J. He, Y. Zhao, Y. Zhao, Photoinduced bending of a coumarin-containing supramolecular polymer. Soft Matter 5, 308–310 (2009)CrossRef
90.
go back to reference H. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRef H. Jiang, S. Kelch, A. Lendlein, Polymers move in response to light. Adv. Mater. 18, 1471–1475 (2006)CrossRef
91.
go back to reference Y. Li, O. Rios, J.K. Keum, J. Chen, M.R. Kessler, Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl. Mater. Interfaces 8, 15750–15757 (2016)CrossRefPubMed Y. Li, O. Rios, J.K. Keum, J. Chen, M.R. Kessler, Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl. Mater. Interfaces 8, 15750–15757 (2016)CrossRefPubMed
92.
go back to reference K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, T.J. White, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318–4324 (2011)CrossRef K.M. Lee, H. Koerner, R.A. Vaia, T.J. Bunning, T.J. White, Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318–4324 (2011)CrossRef
93.
go back to reference T. Yoshino, M. Kondo, J.-i. Mamiya, M. Kinoshita, Y. Yu, T. Ikeda, Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 22, 1361–1363 (2010)CrossRefPubMed T. Yoshino, M. Kondo, J.-i. Mamiya, M. Kinoshita, Y. Yu, T. Ikeda, Three-dimensional photomobility of crosslinked azobenzene liquid-crystalline polymer fibers. Adv. Mater. 22, 1361–1363 (2010)CrossRefPubMed
94.
go back to reference M. Yamada, M. Kondo, J.-i. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)CrossRef M. Yamada, M. Kondo, J.-i. Mamiya, Y. Yu, M. Kinoshita, C.J. Barrett, T. Ikeda, Photomobile polymer materials: Towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008)CrossRef
95.
go back to reference Y. Naka, J.-i. Mamiya, A. Shishido, M. Washio, T. Ikeda, Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J. Mater. Chem. 21, 1681–1683 (2011)CrossRef Y. Naka, J.-i. Mamiya, A. Shishido, M. Washio, T. Ikeda, Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation. J. Mater. Chem. 21, 1681–1683 (2011)CrossRef
96.
go back to reference O.M. Tanchak, C.J. Barrett, Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect. Macromolecules 38, 10566–10570 (2005)CrossRef O.M. Tanchak, C.J. Barrett, Light-induced reversible volume changes in thin films of azo polymers: The photomechanical effect. Macromolecules 38, 10566–10570 (2005)CrossRef
97.
go back to reference M. Irie, D. Kunwatchakun, Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19, 2476–2480 (1986)CrossRef M. Irie, D. Kunwatchakun, Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives. Macromolecules 19, 2476–2480 (1986)CrossRef
98.
go back to reference A. Mamada, T. Tanaka, D. Kungwatchakun, M. Irie, Photoinduced phase transition of gels. Macromolecules 23, 1517–1519 (1990)CrossRef A. Mamada, T. Tanaka, D. Kungwatchakun, M. Irie, Photoinduced phase transition of gels. Macromolecules 23, 1517–1519 (1990)CrossRef
99.
go back to reference X. Zhang, Q. Zhou, H. Liu, H. Liu, UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10, 3748–3754 (2014)CrossRefPubMed X. Zhang, Q. Zhou, H. Liu, H. Liu, UV light induced plasticization and light activated shape memory of spiropyran doped ethylene-vinyl acetate copolymers. Soft Matter 10, 3748–3754 (2014)CrossRefPubMed
100.
go back to reference M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 128, 4303–4309 (2006)PubMedCentralCrossRefPubMed M.-Q. Zhu, L. Zhu, J.J. Han, W. Wu, J.K. Hurst, A.D.Q. Li, Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J. Am. Chem. Soc. 128, 4303–4309 (2006)PubMedCentralCrossRefPubMed
101.
go back to reference I. Bellin, S. Kelch, A. Lendlein, Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17, 2885–2891 (2007)CrossRef I. Bellin, S. Kelch, A. Lendlein, Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J. Mater. Chem. 17, 2885–2891 (2007)CrossRef
102.
go back to reference M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19, 102–108 (2009)CrossRef M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, One-step process for creating triple-shape capability of AB polymer networks. Adv. Funct. Mater. 19, 102–108 (2009)CrossRef
103.
go back to reference S. Chen, J. Hu, C.-W. Yuen, L. Chan, H. Zhuo, Triple shape memory effect in multiple crystalline polyurethanes. Polym. Adv. Technol. 21, 377–380 (2010) S. Chen, J. Hu, C.-W. Yuen, L. Chan, H. Zhuo, Triple shape memory effect in multiple crystalline polyurethanes. Polym. Adv. Technol. 21, 377–380 (2010)
104.
go back to reference A. Lendlein, T. Sauter, Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)CrossRef A. Lendlein, T. Sauter, Shape-memory effect in polymers. Macromol. Chem. Phys. 214, 1175–1177 (2013)CrossRef
105.
106.
go back to reference S.-K. Ahn, R.M. Kasi, Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543 (2011)CrossRef S.-K. Ahn, R.M. Kasi, Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 21, 4543 (2011)CrossRef
107.
go back to reference T. Ware, K. Hearon, A. Lonnecker, K.L. Wooley, D.J. Maitland, W. Voit, Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45, 1062–1069 (2012)PubMedCentralCrossRefPubMed T. Ware, K. Hearon, A. Lonnecker, K.L. Wooley, D.J. Maitland, W. Voit, Triple-shape memory polymers based on self-complementary hydrogen bonding. Macromolecules 45, 1062–1069 (2012)PubMedCentralCrossRefPubMed
108.
go back to reference M. Behl, A. Lendlein, Triple-shape polymers. J. Mater. Chem. 20, 3335–3345 (2010)CrossRef M. Behl, A. Lendlein, Triple-shape polymers. J. Mater. Chem. 20, 3335–3345 (2010)CrossRef
109.
go back to reference M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, Dual and triple shape capability of AB polymer networks based on poly(ε-caprolactone)dimethacrylates. Mater. Res. Soc. Symp. Proc. 1140, 3–8 (2009) M. Behl, I. Bellin, S. Kelch, W. Wagermaier, A. Lendlein, Dual and triple shape capability of AB polymer networks based on poly(ε-caprolactone)dimethacrylates. Mater. Res. Soc. Symp. Proc. 1140, 3–8 (2009)
110.
go back to reference K. Suchao-in, S. Chirachanchai, “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl. Mater. Interfaces 5, 6850–6853 (2013)CrossRefPubMed K. Suchao-in, S. Chirachanchai, “Grafting to” as a novel and simple approach for triple-shape memory polymers. ACS Appl. Mater. Interfaces 5, 6850–6853 (2013)CrossRefPubMed
111.
go back to reference H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009)CrossRef H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network. Macromolecules 42, 273–280 (2009)CrossRef
112.
go back to reference S.-K. Ahn, P. Deshmukh, R.M. Kasi, Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules 43, 7330–7340 (2010)CrossRef S.-K. Ahn, P. Deshmukh, R.M. Kasi, Shape memory behavior of side-chain liquid crystalline polymer networks triggered by dual transition temperatures. Macromolecules 43, 7330–7340 (2010)CrossRef
113.
go back to reference T. Xie, X. Xiao, Y.-T. Cheng, Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823–1827 (2009)CrossRefPubMed T. Xie, X. Xiao, Y.-T. Cheng, Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823–1827 (2009)CrossRefPubMed
114.
go back to reference C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21, 11288–11295 (2011)CrossRef C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect. J. Mater. Chem. 21, 11288–11295 (2011)CrossRef
115.
go back to reference X. Luo, P.T. Mather, Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 20, 2649–2656 (2010)CrossRef X. Luo, P.T. Mather, Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 20, 2649–2656 (2010)CrossRef
116.
go back to reference H. Chen, Y. Liu, T. Gong, L. Wang, K. Zhao, S. Zhou, Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 3, 7048–7056 (2013)CrossRef H. Chen, Y. Liu, T. Gong, L. Wang, K. Zhao, S. Zhou, Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 3, 7048–7056 (2013)CrossRef
117.
go back to reference S. Chen, H. Yuan, Z. Ge, S. Chen, H. Zhuo, J. Liu, Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J. Mater. Chem. C 2, 1041–1049 (2014)CrossRef S. Chen, H. Yuan, Z. Ge, S. Chen, H. Zhuo, J. Liu, Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J. Mater. Chem. C 2, 1041–1049 (2014)CrossRef
119.
go back to reference R. Dolog, R.A. Weiss, Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 46, 7845–7852 (2013)CrossRef R. Dolog, R.A. Weiss, Shape memory behavior of a polyethylene-based carboxylate ionomer. Macromolecules 46, 7845–7852 (2013)CrossRef
120.
go back to reference Q. Zhang, S. Song, J. Feng, P. Wu, A new strategy to prepare polymer composites with versatile shape memory properties. J. Mater. Chem. 22, 24776–24782 (2012)CrossRef Q. Zhang, S. Song, J. Feng, P. Wu, A new strategy to prepare polymer composites with versatile shape memory properties. J. Mater. Chem. 22, 24776–24782 (2012)CrossRef
121.
go back to reference J. Li, T. Xie, Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44, 175–180 (2011)CrossRef J. Li, T. Xie, Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 44, 175–180 (2011)CrossRef
122.
go back to reference X. Qi, Y. Guo, Y. Wei, P. Dong, Q. Fu, Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. B 120, 11064–11073 (2016)CrossRefPubMed X. Qi, Y. Guo, Y. Wei, P. Dong, Q. Fu, Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. B 120, 11064–11073 (2016)CrossRefPubMed
123.
go back to reference Q. Song, H. Chen, S. Zhou, K. Zhao, B. Wang, P. Hu, Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 7, 1739–1746 (2016)CrossRef Q. Song, H. Chen, S. Zhou, K. Zhao, B. Wang, P. Hu, Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 7, 1739–1746 (2016)CrossRef
124.
go back to reference S.-Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama, T. Kaneko, Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew. Chem. Int. Ed. 52, 11143–11148 (2013)CrossRef S.-Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama, T. Kaneko, Hyperbranched polycoumarates with photofunctional multiple shape memory. Angew. Chem. Int. Ed. 52, 11143–11148 (2013)CrossRef
125.
go back to reference K. Kratz, S.A. Madbouly, W. Wagermaier, A. Lendlein, Temperature-memory polymer networks with crystallizable controlling units. Adv. Mater. 23, 4058–4062 (2011)CrossRefPubMed K. Kratz, S.A. Madbouly, W. Wagermaier, A. Lendlein, Temperature-memory polymer networks with crystallizable controlling units. Adv. Mater. 23, 4058–4062 (2011)CrossRefPubMed
126.
go back to reference K. Yu, H.J. Qi, Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)CrossRefPubMed K. Yu, H.J. Qi, Temperature memory effect in amorphous shape memory polymers. Soft Matter 10, 9423–9432 (2014)CrossRefPubMed
127.
128.
go back to reference L. Wang, S. Di, W. Wang, H. Chen, X. Yang, T. Gong, S. Zhou, Tunable temperature memory effect of photo-cross-linked star PCL–PEG networks. Macromolecules 47, 1828–1836 (2014)CrossRef L. Wang, S. Di, W. Wang, H. Chen, X. Yang, T. Gong, S. Zhou, Tunable temperature memory effect of photo-cross-linked star PCL–PEG networks. Macromolecules 47, 1828–1836 (2014)CrossRef
129.
go back to reference K. Kratz, U. Voigt, A. Lendlein, Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv. Funct. Mater. 22, 3057–3065 (2012)CrossRef K. Kratz, U. Voigt, A. Lendlein, Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv. Funct. Mater. 22, 3057–3065 (2012)CrossRef
130.
go back to reference L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derre, A. Kuhn, M. Maugey, P. Poulin, Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487–3495 (2010)CrossRef L. Viry, C. Mercader, P. Miaudet, C. Zakri, A. Derre, A. Kuhn, M. Maugey, P. Poulin, Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487–3495 (2010)CrossRef
131.
go back to reference P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007)CrossRefPubMed P. Miaudet, A. Derré, M. Maugey, C. Zakri, P.M. Piccione, R. Inoubli, P. Poulin, Shape and temperature memory of nanocomposites with broadened glass transition. Science 318, 1294–1296 (2007)CrossRefPubMed
132.
go back to reference N. Fritzsche, T. Pretsch, Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47, 5952–5959 (2014)CrossRef N. Fritzsche, T. Pretsch, Programming of temperature-memory onsets in a semicrystalline polyurethane elastomer. Macromolecules 47, 5952–5959 (2014)CrossRef
133.
go back to reference N. Mirtschin, T. Pretsch, Designing temperature-memory effects in semicrystalline polyurethane. RSC Adv. 5, 46307–46315 (2015)CrossRef N. Mirtschin, T. Pretsch, Designing temperature-memory effects in semicrystalline polyurethane. RSC Adv. 5, 46307–46315 (2015)CrossRef
134.
go back to reference S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, T. Riccò, One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54, 4253–4265 (2013)CrossRef S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, T. Riccò, One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer 54, 4253–4265 (2013)CrossRef
135.
go back to reference T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)CrossRef T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41, 184–192 (2008)CrossRef
136.
go back to reference M. Behl, K. Kratz, J. Zotzmann, U. Nöchel, A. Lendlein, Reversible bidirectional shape-memory polymers. Adv. Mater. 25, 4466–4469 (2013)CrossRefPubMed M. Behl, K. Kratz, J. Zotzmann, U. Nöchel, A. Lendlein, Reversible bidirectional shape-memory polymers. Adv. Mater. 25, 4466–4469 (2013)CrossRefPubMed
137.
go back to reference H. Seok Jin, Y. Woong-Ryeol, Y. Ji Ho, Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Mater. Struct. 19, 035022 (2010)CrossRef H. Seok Jin, Y. Woong-Ryeol, Y. Ji Ho, Two-way shape memory behavior of shape memory polyurethanes with a bias load. Smart Mater. Struct. 19, 035022 (2010)CrossRef
138.
go back to reference J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments. Adv. Mater. 22, 3424–3429 (2010)CrossRefPubMed J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, Reversible triple-shape effect of polymer networks containing polypentadecalactone- and poly(ε-caprolactone)-segments. Adv. Mater. 22, 3424–3429 (2010)CrossRefPubMed
139.
go back to reference J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320–5325 (2011)CrossRef J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer 52, 5320–5325 (2011)CrossRef
140.
go back to reference S. Pandini, S. Passera, M. Messori, K. Paderni, M. Toselli, A. Gianoncelli, E. Bontempi, T. Riccò, Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53, 1915–1924 (2012)CrossRef S. Pandini, S. Passera, M. Messori, K. Paderni, M. Toselli, A. Gianoncelli, E. Bontempi, T. Riccò, Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 53, 1915–1924 (2012)CrossRef
141.
go back to reference M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 5730–5733 (2013)CrossRefPubMed M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Multifunctional hybrid nanocomposites with magnetically controlled reversible shape-memory effect. Adv. Mater. 25, 5730–5733 (2013)CrossRefPubMed
142.
go back to reference M. Behl, J. Zotzmann, A. Lendlein, One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments. Int. J. Artif. Organs 34, 231–237 (2011)CrossRefPubMed M. Behl, J. Zotzmann, A. Lendlein, One-way and reversible dual-shape effect of polymer networks based on polypentadecalactone segments. Int. J. Artif. Organs 34, 231–237 (2011)CrossRefPubMed
143.
go back to reference T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2, 6855–6866 (2014)CrossRefPubMed T. Gong, K. Zhao, W. Wang, H. Chen, L. Wang, S. Zhou, Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2, 6855–6866 (2014)CrossRefPubMed
144.
go back to reference A. Biswas, V.K. Aswal, P.U. Sastry, D. Rana, P. Maiti, Reversible bidirectional shape memory effect in polyurethanes through molecular flipping. Macromolecules 49, 4889–4897 (2016)CrossRef A. Biswas, V.K. Aswal, P.U. Sastry, D. Rana, P. Maiti, Reversible bidirectional shape memory effect in polyurethanes through molecular flipping. Macromolecules 49, 4889–4897 (2016)CrossRef
145.
go back to reference F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015)PubMedCentralCrossRefPubMed F. Zhang, T. Zhou, Y. Liu, J. Leng, Microwave synthesis and actuation of shape memory polycaprolactone foams with high speed. Sci. Rep. 5, 11152 (2015)PubMedCentralCrossRefPubMed
146.
go back to reference M.Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 444, 227–235 (2007)CrossRef M.Y. Razzaq, M. Anhalt, L. Frormann, B. Weidenfeller, Thermal, electrical and magnetic studies of magnetite filled polyurethane shape memory polymers. Mater. Sci. Eng. A 444, 227–235 (2007)CrossRef
147.
go back to reference H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)CrossRefPubMed H. Koerner, G. Price, N.A. Pearce, M. Alexander, R.A. Vaia, Remotely actuated polymer nanocomposites[mdash]stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 3, 115–120 (2004)CrossRefPubMed
148.
go back to reference K.C. Hribar, R.B. Metter, J.L. Ifkovits, T. Troxler, J.A. Burdick, Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 5, 1830–1834 (2009)PubMedCentralCrossRefPubMed K.C. Hribar, R.B. Metter, J.L. Ifkovits, T. Troxler, J.A. Burdick, Light-induced temperature transitions in biodegradable polymer and nanorod composites. Small 5, 1830–1834 (2009)PubMedCentralCrossRefPubMed
149.
go back to reference H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)CrossRef H. Zhang, H. Xia, Y. Zhao, Optically triggered and spatially controllable shape-memory polymer-gold nanoparticle composite materials. J. Mater. Chem. 22, 845–849 (2012)CrossRef
150.
go back to reference Y. Hu, W. Chen, Externally induced thermal actuation of polymer nanocomposites. Macromol. Chem. Phys. 212, 992–998 (2011)CrossRef Y. Hu, W. Chen, Externally induced thermal actuation of polymer nanocomposites. Macromol. Chem. Phys. 212, 992–998 (2011)CrossRef
151.
go back to reference L. Hsu, C. Weder, S.J. Rowan, Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011)CrossRef L. Hsu, C. Weder, S.J. Rowan, Stimuli-responsive, mechanically-adaptive polymer nanocomposites. J. Mater. Chem. 21, 2812–2822 (2011)CrossRef
152.
go back to reference S.A. Madbouly, A. Lendlein, Shape-memory polymer composites. Adv. Polym. Sci. 226, 41–95 (2010)CrossRef S.A. Madbouly, A. Lendlein, Shape-memory polymer composites. Adv. Polym. Sci. 226, 41–95 (2010)CrossRef
153.
go back to reference M.Y. Razzaq, M. Behl, A. Lendlein, Memory-effects of magnetic nanocomposites. Nanoscale 4, 6181–6195 (2012)CrossRefPubMed M.Y. Razzaq, M. Behl, A. Lendlein, Memory-effects of magnetic nanocomposites. Nanoscale 4, 6181–6195 (2012)CrossRefPubMed
154.
go back to reference C.S. Hazelton, S.C. Arzberger, M.S. Lake, N.A. Munshi, RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles. J Adv Mater (Covina, CA, US) 39, 35–39 (2007) C.S. Hazelton, S.C. Arzberger, M.S. Lake, N.A. Munshi, RF actuation of a thermoset shape memory polymer with embedded magnetoelectroelastic particles. J Adv Mater (Covina, CA, US) 39, 35–39 (2007)
155.
go back to reference P.R. Buckley, G.H. McKinley, T.S. Wilson, W. Small, W.J. Benett, J.P. Bearinger, M.W. McElfresh, D.J. Maitland, Inductively heated shape memory polymer for the magnetic actuation of medical devices. I.E.E.E. Trans. Biomed. Eng. 53, 2075–2083 (2006) P.R. Buckley, G.H. McKinley, T.S. Wilson, W. Small, W.J. Benett, J.P. Bearinger, M.W. McElfresh, D.J. Maitland, Inductively heated shape memory polymer for the magnetic actuation of medical devices. I.E.E.E. Trans. Biomed. Eng. 53, 2075–2083 (2006)
156.
go back to reference U.N. Kumar, K. Kratz, W. Wagermaier, M. Behl, A. Lendlein, Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J. Mater. Chem. 20, 3404–3415 (2010)CrossRef U.N. Kumar, K. Kratz, W. Wagermaier, M. Behl, A. Lendlein, Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J. Mater. Chem. 20, 3404–3415 (2010)CrossRef
157.
go back to reference M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method. Adv. Mater. 25, 5514–5518 (2013)CrossRefPubMed M.Y. Razzaq, M. Behl, K. Kratz, A. Lendlein, Triple-shape effect in polymer-based composites by cleverly matching geometry of active component with heating method. Adv. Mater. 25, 5514–5518 (2013)CrossRefPubMed
158.
go back to reference M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184–191 (2012)CrossRef M.Y. Razzaq, M. Behl, A. Lendlein, Magnetic memory effect of nanocomposites. Adv. Funct. Mater. 22, 184–191 (2012)CrossRef
159.
go back to reference M.Y. Razzaq, M. Behl, U. Nöchel, A. Lendlein, Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles. Polymer 55, 5953–5960 (2014)CrossRef M.Y. Razzaq, M. Behl, U. Nöchel, A. Lendlein, Magnetically controlled shape-memory effects of hybrid nanocomposites from oligo(omega-pentadecalactone) and covalently integrated magnetite nanoparticles. Polymer 55, 5953–5960 (2014)CrossRef
160.
go back to reference P.J. Skrzeszewska, L.N. Jong, F.A. de Wolf, M.A. Cohen Stuart, J. van der Gucht, Shape-memory efects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12, 2285–2292 (2011)CrossRefPubMed P.J. Skrzeszewska, L.N. Jong, F.A. de Wolf, M.A. Cohen Stuart, J. van der Gucht, Shape-memory efects in biopolymer networks with collagen-like transient nodes. Biomacromolecules 12, 2285–2292 (2011)CrossRefPubMed
161.
go back to reference J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Nano. Lett. 2, 86–89 (2013) J. Hao, R.A. Weiss, Mechanically tough, thermally activated shape memory hydrogels. ACS Nano. Lett. 2, 86–89 (2013)
162.
go back to reference U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49, 2457–2466 (2013)CrossRef U. Nöchel, C.S. Reddy, N.K. Uttamchand, K. Kratz, M. Behl, A. Lendlein, Shape-memory properties of hydrogels having a poly(ε-caprolactone) crosslinker and switching segment in an aqueous environment. Eur. Polym. J. 49, 2457–2466 (2013)CrossRef
163.
go back to reference G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7, 12067–12073 (2015)CrossRefPubMed G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Appl. Mater. Interfaces 7, 12067–12073 (2015)CrossRefPubMed
164.
go back to reference M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014)CrossRefPubMed M. Guo, L.M. Pitet, H.M. Wyss, M. Vos, P.Y.W. Dankers, E.W. Meijer, Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136, 6969–6977 (2014)CrossRefPubMed
165.
go back to reference W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015)CrossRefPubMed W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015)CrossRefPubMed
166.
go back to reference V. Kozlovskaya, J. Chen, C. Tedjo, X. Liang, J. Campos-Gomez, J.W. Oh, pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B 2, 2494–2507 (2014)CrossRefPubMed V. Kozlovskaya, J. Chen, C. Tedjo, X. Liang, J. Campos-Gomez, J.W. Oh, pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. J. Mater. Chem. B 2, 2494–2507 (2014)CrossRefPubMed
167.
go back to reference X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012)CrossRefPubMed X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012)CrossRefPubMed
168.
go back to reference H. Meng, J. Zheng, X. Wen, Z. Cai, J. Zhang, T. Chen, pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid–diol ester bonds. Macromol. Rapid Commun. 36, 533–537 (2015)CrossRefPubMed H. Meng, J. Zheng, X. Wen, Z. Cai, J. Zhang, T. Chen, pH- and sugar-induced shape memory hydrogel based on reversible phenylboronic acid–diol ester bonds. Macromol. Rapid Commun. 36, 533–537 (2015)CrossRefPubMed
169.
go back to reference A. Yasin, H. Li, Z. Lu, S.U. Rehman, M. Siddiq, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10, 972–977 (2014)CrossRefPubMed A. Yasin, H. Li, Z. Lu, S.U. Rehman, M. Siddiq, H. Yang, A shape memory hydrogel induced by the interactions between metal ions and phosphate. Soft Matter 10, 972–977 (2014)CrossRefPubMed
170.
go back to reference C.-H. Lu, W. Guo, Y. Hu, X.-J. Qi, I. Willner, Multitriggered shape-memory acrylamide–DNA hydrogels. J. Am. Chem. Soc. 137, 15723–15731 (2015)CrossRefPubMed C.-H. Lu, W. Guo, Y. Hu, X.-J. Qi, I. Willner, Multitriggered shape-memory acrylamide–DNA hydrogels. J. Am. Chem. Soc. 137, 15723–15731 (2015)CrossRefPubMed
171.
go back to reference R.D. Harris, J.T. Auletta, S.A.M. Motlagh, M.J. Lawless, N.M. Perri, S. Saxena, L.M. Weiland, D.H. Waldeck, W.W. Clark, T.Y. Meyer, Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett. 2, 1095–1099 (2013)CrossRef R.D. Harris, J.T. Auletta, S.A.M. Motlagh, M.J. Lawless, N.M. Perri, S. Saxena, L.M. Weiland, D.H. Waldeck, W.W. Clark, T.Y. Meyer, Chemical and electrochemical manipulation of mechanical properties in stimuli-responsive copper-cross-linked hydrogels. ACS Macro Lett. 2, 1095–1099 (2013)CrossRef
172.
go back to reference Y. Han, T. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33, 225–231 (2012)CrossRefPubMed Y. Han, T. Bai, Y. Liu, X. Zhai, W. Liu, Zinc ion uniquely induced triple shape memory effect of dipole-dipole reinforced ultra-high strength hydrogels. Macromol. Rapid Commun. 33, 225–231 (2012)CrossRefPubMed
173.
go back to reference Y. Kagami, J.P. Gong, Y. Osada, Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol. Rapid Commun. 17, 539–543 (1996)CrossRef Y. Kagami, J.P. Gong, Y. Osada, Shape memory behaviors of crosslinked copolymers containing stearyl acrylate. Macromol. Rapid Commun. 17, 539–543 (1996)CrossRef
175.
go back to reference C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)CrossRef C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers. J. Mater. Chem. 17, 1543–1558 (2007)CrossRef
176.
go back to reference K. Inomata, T. Terahama, R. Sekoguchi, T. Ito, H. Sugimoto, E. Nakanishi, Shape memory properties of polypeptide hydrogels having hydrophobic alkyl side chains. Polymer 53, 3281–3286 (2012)CrossRef K. Inomata, T. Terahama, R. Sekoguchi, T. Ito, H. Sugimoto, E. Nakanishi, Shape memory properties of polypeptide hydrogels having hydrophobic alkyl side chains. Polymer 53, 3281–3286 (2012)CrossRef
177.
go back to reference M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications. J. Taiwan Inst. Chem. Eng. 45, 3134–3138 (2014)CrossRef M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications. J. Taiwan Inst. Chem. Eng. 45, 3134–3138 (2014)CrossRef
178.
go back to reference J.L. Zhang, W.M. Huang, G. Gao, J. Fu, Y. Zhou, A.V. Salvekar, S.S. Venkatraman, Y.S. Wong, K.H. Tay, W.R. Birch, Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur. Polym. J. 58, 41–51 (2014)CrossRef J.L. Zhang, W.M. Huang, G. Gao, J. Fu, Y. Zhou, A.V. Salvekar, S.S. Venkatraman, Y.S. Wong, K.H. Tay, W.R. Birch, Shape memory/change effect in a double network nanocomposite tough hydrogel. Eur. Polym. J. 58, 41–51 (2014)CrossRef
179.
go back to reference M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with switching segments based on oligo(omega-pentadecalactone). Macromol. Mater. Eng. 297, 1184–1192 (2012)CrossRef M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with switching segments based on oligo(omega-pentadecalactone). Macromol. Mater. Eng. 297, 1184–1192 (2012)CrossRef
180.
go back to reference M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with crystallizable oligotetrahydrofuran side chains. Macromol. Symp. 345, 8–13 (2014)CrossRef M. Balk, M. Behl, U. Nöchel, A. Lendlein, Shape-memory hydrogels with crystallizable oligotetrahydrofuran side chains. Macromol. Symp. 345, 8–13 (2014)CrossRef
181.
go back to reference U. Nöchel, M. Behl, M. Balk, A. Lendlein, Thermally-induced triple-shape hydrogels: Soft materials enabling complex movements. ACS Appl. Mater. Interfaces 8, 28068–28076 (2016)CrossRefPubMed U. Nöchel, M. Behl, M. Balk, A. Lendlein, Thermally-induced triple-shape hydrogels: Soft materials enabling complex movements. ACS Appl. Mater. Interfaces 8, 28068–28076 (2016)CrossRefPubMed
182.
go back to reference K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984–8987 (2015)CrossRef K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Self-healing, expansion-contraction, and shape-memory properties of a preorganized supramolecular hydrogel through host–guest interactions. Angew. Chem. Int. Ed. 54, 8984–8987 (2015)CrossRef
183.
go back to reference G.F. Li, J. Wu, B. Wang, S.F. Yan, K.X. Zhang, J.X. Ding, J.B. Yin, Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules 16, 3508–3518 (2015)CrossRefPubMed G.F. Li, J. Wu, B. Wang, S.F. Yan, K.X. Zhang, J.X. Ding, J.B. Yin, Self-healing supramolecular self-assembled hydrogels based on poly(L-glutamic acid). Biomacromolecules 16, 3508–3518 (2015)CrossRefPubMed
184.
go back to reference N.M. Sangeetha, U. Maitra, Supramolecular gels: Functions and uses. Chem. Soc. Rev. 34, 821–836 (2005)CrossRefPubMed N.M. Sangeetha, U. Maitra, Supramolecular gels: Functions and uses. Chem. Soc. Rev. 34, 821–836 (2005)CrossRefPubMed
185.
go back to reference X. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012)CrossRefPubMed X. Yan, F. Wang, B. Zheng, F. Huang, Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev. 41, 6042–6065 (2012)CrossRefPubMed
186.
go back to reference B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh, X.J. Loh, Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8, 10070–10087 (2016)CrossRefPubMed B.Q.Y. Chan, Z.W.K. Low, S.J.W. Heng, S.Y. Chan, C. Owh, X.J. Loh, Recent advances in shape memory soft materials for biomedical applications. ACS Appl. Mater. Interfaces 8, 10070–10087 (2016)CrossRefPubMed
187.
go back to reference T. Bai, Y. Han, P. Zhang, W. Wang, W. Liu, Zinc ion-triggered two-way macro−/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter 8, 6846–6852 (2012)CrossRef T. Bai, Y. Han, P. Zhang, W. Wang, W. Liu, Zinc ion-triggered two-way macro−/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter 8, 6846–6852 (2012)CrossRef
188.
go back to reference B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: Ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7, 16865–16872 (2015)CrossRefPubMed B. Xu, Y. Li, F. Gao, X. Zhai, M. Sun, W. Lu, Z. Cao, W. Liu, High strength multifunctional multiwalled hydrogel tubes: Ion-triggered shape memory, antibacterial, and anti-inflammatory efficacies. ACS Appl. Mater. Interfaces 7, 16865–16872 (2015)CrossRefPubMed
189.
go back to reference W. Nan, W. Wang, H. Gao, W. Liu, Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9, 132–137 (2013)CrossRef W. Nan, W. Wang, H. Gao, W. Liu, Fabrication of a shape memory hydrogel based on imidazole-zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter 9, 132–137 (2013)CrossRef
190.
go back to reference X. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Stretchable supramolecular hydrogels with triple shape memory effect. Chem. Sci. 7, 6715–6720 (2016)PubMedCentralCrossRefPubMed X. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Stretchable supramolecular hydrogels with triple shape memory effect. Chem. Sci. 7, 6715–6720 (2016)PubMedCentralCrossRefPubMed
191.
go back to reference O. Peters, H. Ritter, Supramolecular controlled water uptake of macroscopic materials by a cyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew. Chem. Int. Ed. 52, 8961–8963 (2013)CrossRef O. Peters, H. Ritter, Supramolecular controlled water uptake of macroscopic materials by a cyclodextrin-induced hydrophobic-to-hydrophilic transition. Angew. Chem. Int. Ed. 52, 8961–8963 (2013)CrossRef
192.
go back to reference Y.-N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl. Mater. Interfaces 8, 27199–27206 (2016)CrossRefPubMed Y.-N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, Poly(vinyl alcohol)–tannic acid hydrogels with excellent mechanical properties and shape memory behaviors. ACS Appl. Mater. Interfaces 8, 27199–27206 (2016)CrossRefPubMed
193.
go back to reference C.L. Lewis, E.M. Dell, A review of shape memory polymers bearing reversible binding groups. J. Polym. Sci. B Polym. Phys. 54, 1340–1364 (2016)CrossRef C.L. Lewis, E.M. Dell, A review of shape memory polymers bearing reversible binding groups. J. Polym. Sci. B Polym. Phys. 54, 1340–1364 (2016)CrossRef
194.
go back to reference L. Qin, F. Xie, P. Duan, M. Liu, A peptide dendron-based shrinkable metallo-hydrogel for charged species separation and stepwise release of drugs. Chem. Eur. J. 20, 15419–15425 (2014)CrossRefPubMed L. Qin, F. Xie, P. Duan, M. Liu, A peptide dendron-based shrinkable metallo-hydrogel for charged species separation and stepwise release of drugs. Chem. Eur. J. 20, 15419–15425 (2014)CrossRefPubMed
195.
go back to reference M. Hacker, H. Nawaz, Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int. J. Mol. Sci. 16, 26056 (2015)CrossRef M. Hacker, H. Nawaz, Multi-functional macromers for hydrogel design in biomedical engineering and regenerative medicine. Int. J. Mol. Sci. 16, 26056 (2015)CrossRef
196.
go back to reference J.L. Hu, J. Lu, Shape memory polymers in textiles. Adv. Sci. Technol. 80, 30–38 (2013)CrossRef J.L. Hu, J. Lu, Shape memory polymers in textiles. Adv. Sci. Technol. 80, 30–38 (2013)CrossRef
197.
go back to reference A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673 (2002)CrossRefPubMed A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296, 1673 (2002)CrossRefPubMed
198.
go back to reference F. El Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)CrossRef F. El Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications. Adv. Eng. Mater. 4, 91–104 (2002)CrossRef
199.
go back to reference D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)CrossRefPubMed D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 30, 1–11 (2002)CrossRefPubMed
200.
go back to reference W. Small IV, T. Wilson, W. Benett, J. Loge, D. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)CrossRef W. Small IV, T. Wilson, W. Benett, J. Loge, D. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device. Opt. Express 13, 8204–8213 (2005)CrossRef
201.
go back to reference S. Shih-Horng, Mini review of the fully bioabsorbable polymeric stents. Recent Pat. Eng. 1, 244–250 (2007)CrossRef S. Shih-Horng, Mini review of the fully bioabsorbable polymeric stents. Recent Pat. Eng. 1, 244–250 (2007)CrossRef
202.
go back to reference F. Jung, C. Wischke, A. Lendlein, Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35, 607–613 (2010)CrossRef F. Jung, C. Wischke, A. Lendlein, Degradable, multifunctional cardiovascular implants: Challenges and hurdles. MRS Bull. 35, 607–613 (2010)CrossRef
Metadata
Title
Shape-Memory Polymers
Authors
Magdalena Mazurek-Budzyńska
Muhammad Yasar Razzaq
Marc Behl
Andreas Lendlein
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95987-0_18

Premium Partners