Skip to main content
Top

2019 | OriginalPaper | Chapter

16. Self-Healing Polymers: From Biological Systems to Highly Functional Polymers

Authors : Stefan Zechel, Martin D. Hager, Ulrich S. Schubert

Published in: Functional Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The self-healing phenomenon is well-known from nature. Since the last 15 years, several approaches were developed in order to transfer this behavior into synthetic materials and to enable the preparation of multifunctional polymers. The following chapter summarizes the different polymers and their corresponding healing mechanism and provides an overview of the current state of the art. Additionally, the healing of functions as well as the characterization of the self-healing behavior is provided. Furthermore, a short comparison between polymers and other material classes is presented. Finally, the first commercial available systems are summarized showing the way for future developments in this area.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference B. McKibbin, Biology of fracture healing in long bones. J. Bone Joint Surg. Brit. 60, 150–162 (1978)CrossRefPubMed B. McKibbin, Biology of fracture healing in long bones. J. Bone Joint Surg. Brit. 60, 150–162 (1978)CrossRefPubMed
9.
go back to reference Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Healing length and bubble formation in DNA. Phys. Rev. E 73(5), 051902 (2006)CrossRef Z. Rapti, A. Smerzi, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Healing length and bubble formation in DNA. Phys. Rev. E 73(5), 051902 (2006)CrossRef
10.
go back to reference J. Komenda, F. Michoux, P.J. Nixon, Keeping the green world alive: the repair cycle, in Self-Healing at the Nanoscale, ed. by V. Amendola, M. Meneghetti (Taylor & Francis Group, Boca Raton, 2012), pp. 3–22 J. Komenda, F. Michoux, P.J. Nixon, Keeping the green world alive: the repair cycle, in Self-Healing at the Nanoscale, ed. by V. Amendola, M. Meneghetti (Taylor & Francis Group, Boca Raton, 2012), pp. 3–22
13.
go back to reference R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), P1 (2007)CrossRefPubMed R.S. Trask, H.R. Williams, I.P. Bond, Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir. Biomim. 2(1), P1 (2007)CrossRefPubMed
28.
go back to reference Y. Tao, Z. Lin, R. Min Zhi, Z. Ming Qiu, Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Mater. Struct. 17(1), 015019 (2008)CrossRef Y. Tao, Z. Lin, R. Min Zhi, Z. Ming Qiu, Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent. Smart Mater. Struct. 17(1), 015019 (2008)CrossRef
34.
go back to reference Y. Yan Chao, Y. Yueping, R. Min Zhi, C. Haibin, W. Jingshen, Z. Ming Qiu, Q. Shi Xiang, Y. Gui Cheng, Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent. Smart Mater. Struct. 20(1), 015024 (2011)CrossRef Y. Yan Chao, Y. Yueping, R. Min Zhi, C. Haibin, W. Jingshen, Z. Ming Qiu, Q. Shi Xiang, Y. Gui Cheng, Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy–mercaptan healing agent. Smart Mater. Struct. 20(1), 015024 (2011)CrossRef
48.
go back to reference F. Omosola, R. Kevin, B. Biswajit, Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater. Struct. 23(9), 095017 (2014)CrossRef F. Omosola, R. Kevin, B. Biswajit, Glass fibre polyester composite with in vivo vascular channel for use in self-healing. Smart Mater. Struct. 23(9), 095017 (2014)CrossRef
49.
go back to reference M. Motuku, U.K. Vaidya, G.M. Janowski, Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 8(5), 623 (1999)CrossRef M. Motuku, U.K. Vaidya, G.M. Janowski, Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater. Struct. 8(5), 623 (1999)CrossRef
54.
go back to reference P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Diels–Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J. Appl. Polym. Sci. 131(9) (2014). https://doi.org/10.1002/app.40234 P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Diels–Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate. J. Appl. Polym. Sci. 131(9) (2014). https://​doi.​org/​10.​1002/​app.​40234
56.
go back to reference M.J. Barthel, T. Rudolph, A. Teichler, R.M. Paulus, J. Vitz, S. Hoeppener, M.D. Hager, F.H. Schacher, U.S. Schubert, Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films. Adv. Funct. Mater. 23(39), 4921–4932 (2013). https://doi.org/10.1002/adfm.201300469CrossRef M.J. Barthel, T. Rudolph, A. Teichler, R.M. Paulus, J. Vitz, S. Hoeppener, M.D. Hager, F.H. Schacher, U.S. Schubert, Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films. Adv. Funct. Mater. 23(39), 4921–4932 (2013). https://​doi.​org/​10.​1002/​adfm.​201300469CrossRef
57.
go back to reference R.K. Bose, J. Kötteritzsch, S.J. Garcia, M.D. Hager, U.S. Schubert, S. van der Zwaag, A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J. Polym. Sci. Part A: Polym. Chem. 52(12), 1669–1675 (2014). https://doi.org/10.1002/pola.27164CrossRef R.K. Bose, J. Kötteritzsch, S.J. Garcia, M.D. Hager, U.S. Schubert, S. van der Zwaag, A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J. Polym. Sci. Part A: Polym. Chem. 52(12), 1669–1675 (2014). https://​doi.​org/​10.​1002/​pola.​27164CrossRef
61.
go back to reference E.B. Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S.R. Nutt, M.L. Auad, Synthesis and characterization of a single-component thermally remendable polymer network: staudinger and Stille revisited. Macromolecules 41(14), 5203–5209 (2008). https://doi.org/10.1021/ma800432gCrossRef E.B. Murphy, E. Bolanos, C. Schaffner-Hamann, F. Wudl, S.R. Nutt, M.L. Auad, Synthesis and characterization of a single-component thermally remendable polymer network: staudinger and Stille revisited. Macromolecules 41(14), 5203–5209 (2008). https://​doi.​org/​10.​1021/​ma800432gCrossRef
68.
74.
76.
go back to reference J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A.C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45(1), 142–149 (2012). https://doi.org/10.1021/ma2015134CrossRef J.A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A.C. Balazs, T. Kowalewski, K. Matyjaszewski, Self-healing polymer films based on thiol–disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45(1), 142–149 (2012). https://​doi.​org/​10.​1021/​ma2015134CrossRef
78.
83.
92.
go back to reference M. Yan, J. Tang, H.-L. Xie, B. Ni, H.-L. Zhang, E.-Q. Chen, Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 3(33), 8526–8534 (2015). https://doi.org/10.1039/C5TC01603GCrossRef M. Yan, J. Tang, H.-L. Xie, B. Ni, H.-L. Zhang, E.-Q. Chen, Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block. J. Mater. Chem. C 3(33), 8526–8534 (2015). https://​doi.​org/​10.​1039/​C5TC01603GCrossRef
96.
go back to reference D. Montarnal, P. Cordier, C. Soulié-Ziakovic, F. Tournilhac, L. Leibler, Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part A: Polym. Chem. 46(24), 7925–7936 (2008). https://doi.org/10.1002/pola.23094CrossRef D. Montarnal, P. Cordier, C. Soulié-Ziakovic, F. Tournilhac, L. Leibler, Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea. J. Polym. Sci. Part A: Polym. Chem. 46(24), 7925–7936 (2008). https://​doi.​org/​10.​1002/​pola.​23094CrossRef
97.
98.
go back to reference R. Chang, Y. Huang, G. Shan, Y. Bao, X. Yun, T. Dong, P. Pan, Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym. Chem. 6(32), 5899–5910 (2015). https://doi.org/10.1039/C5PY00742ACrossRef R. Chang, Y. Huang, G. Shan, Y. Bao, X. Yun, T. Dong, P. Pan, Alternating poly(lactic acid)/poly(ethylene-co-butylene) supramolecular multiblock copolymers with tunable shape memory and self-healing properties. Polym. Chem. 6(32), 5899–5910 (2015). https://​doi.​org/​10.​1039/​C5PY00742ACrossRef
101.
go back to reference S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010). https://doi.org/10.1021/ja104446rCrossRefPubMed S. Burattini, B.W. Greenland, D.H. Merino, W. Weng, J. Seppala, H.M. Colquhoun, W. Hayes, M.E. Mackay, I.W. Hamley, S.J. Rowan, A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132(34), 12051–12058 (2010). https://​doi.​org/​10.​1021/​ja104446rCrossRefPubMed
102.
go back to reference S. Burattini, B.W. Greenland, W. Hayes, M.E. Mackay, S.J. Rowan, H.M. Colquhoun, A supramolecular polymer based on tweezer-type π−π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23(1), 6–8 (2011). https://doi.org/10.1021/cm102963kCrossRef S. Burattini, B.W. Greenland, W. Hayes, M.E. Mackay, S.J. Rowan, H.M. Colquhoun, A supramolecular polymer based on tweezer-type π−π stacking interactions: molecular design for healability and enhanced toughness. Chem. Mater. 23(1), 6–8 (2011). https://​doi.​org/​10.​1021/​cm102963kCrossRef
108.
go back to reference R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 17(3), 1697–1704 (2015). https://doi.org/10.1039/C4CP04015ECrossRefPubMed R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys. Chem. Chem. Phys. 17(3), 1697–1704 (2015). https://​doi.​org/​10.​1039/​C4CP04015ECrossRefPubMed
111.
go back to reference S. Bode, R.K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F.H. Schacher, R.M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 4(18), 4966–4973 (2013). https://doi.org/10.1039/C3PY00288HCrossRef S. Bode, R.K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F.H. Schacher, R.M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S.J. Garcia, S. Spange, S. van der Zwaag, M.D. Hager, U.S. Schubert, Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym. Chem. 4(18), 4966–4973 (2013). https://​doi.​org/​10.​1039/​C3PY00288HCrossRef
113.
go back to reference S. Bode, M. Enke, R.K. Bose, F.H. Schacher, S.J. Garcia, S. van der Zwaag, M.D. Hager, U.S. Schubert, Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. J. Mater. Chem. A 3(44), 22145–22153 (2015). https://doi.org/10.1039/C5TA05545HCrossRef S. Bode, M. Enke, R.K. Bose, F.H. Schacher, S.J. Garcia, S. van der Zwaag, M.D. Hager, U.S. Schubert, Correlation between scratch healing and rheological behavior for terpyridine complex based metallopolymers. J. Mater. Chem. A 3(44), 22145–22153 (2015). https://​doi.​org/​10.​1039/​C5TA05545HCrossRef
115.
123.
go back to reference T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013). https://doi.org/10.1002/adma.201205321CrossRefPubMed T. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Preorganized hydrogel: self-healing properties of supramolecular hydrogels formed by polymerization of host–guest-monomers that contain cyclodextrins and hydrophobic guest groups. Adv. Mater. 25(20), 2849–2853 (2013). https://​doi.​org/​10.​1002/​adma.​201205321CrossRefPubMed
124.
go back to reference T. Kakuta, Y. Takashima, T. Sano, T. Nakamura, Y. Kobayashi, H. Yamaguchi, A. Harada, Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host–guest interactions. Macromolecules 48(3), 732–738 (2015). https://doi.org/10.1021/ma502316dCrossRef T. Kakuta, Y. Takashima, T. Sano, T. Nakamura, Y. Kobayashi, H. Yamaguchi, A. Harada, Adhesion between semihard polymer materials containing cyclodextrin and adamantane based on host–guest interactions. Macromolecules 48(3), 732–738 (2015). https://​doi.​org/​10.​1021/​ma502316dCrossRef
139.
go back to reference N. Oya, P. Sukarsaatmadja, K. Ishida, N. Yoshie, Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym. J. 44(7), 724–729 (2012)CrossRef N. Oya, P. Sukarsaatmadja, K. Ishida, N. Yoshie, Photoinduced mendable network polymer from poly(butylene adipate) end-functionalized with cinnamoyl groups. Polym. J. 44(7), 724–729 (2012)CrossRef
164.
go back to reference S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J.F. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor [small pi]-[small pi] stacking interactions. Chem. Commun. 44, 6717–6719 (2009). https://doi.org/10.1039/B910648KCrossRef S. Burattini, H.M. Colquhoun, J.D. Fox, D. Friedmann, B.W. Greenland, P.J.F. Harris, W. Hayes, M.E. Mackay, S.J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor [small pi]-[small pi] stacking interactions. Chem. Commun. 44, 6717–6719 (2009). https://​doi.​org/​10.​1039/​B910648KCrossRef
172.
go back to reference B. Sandmann, S. Bode, M.D. Hager, U.S. Schubert, Metallopolymers as an emerging class of self-healing materials. Adv. Polym. Sci. 262, 239–257 (2013)CrossRef B. Sandmann, S. Bode, M.D. Hager, U.S. Schubert, Metallopolymers as an emerging class of self-healing materials. Adv. Polym. Sci. 262, 239–257 (2013)CrossRef
175.
198.
218.
Metadata
Title
Self-Healing Polymers: From Biological Systems to Highly Functional Polymers
Authors
Stefan Zechel
Martin D. Hager
Ulrich S. Schubert
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95987-0_19

Premium Partners