Skip to main content
Top
Published in: Advances in Manufacturing 2/2024

27-01-2024

Shock effects on the upper limit of the collision weld process window

Authors: Blake Barnett, Anupam Vivek, Glenn Daehn

Published in: Advances in Manufacturing | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows. Thus, the upper limit of the weld window is governed by the evolution of dynamic stresses and temperatures at the weld interface. Current formulations for the upper limit of the collision weld window assume that both the flyer and target are made of the same material and approximate stress propagation velocities using the acoustic velocity or the shear wave velocity of the weld material. However, collision welding fundamentally depends on the impacts that generate shockwaves in weld members, which can dominate the stress propagation velocities in thin weld sections. Therefore, this study proposes an alternative weld window upper limit that approximates stress propagation using shock velocities calculated from modified 1-D Rankine-Hugoniot relations. The shock upper limit is validated against the experimental and simulation data in the collision welding literature, and offers a design tool to rapidly predict more accurate optimal collision weld process limits for similar and dissimilar weld couples compared to existing models without the cost or complexity of high-fidelity simulations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Blazynski TZ (1983) Explosive welding, forming, and compaction. Springer, BerlinCrossRef Blazynski TZ (1983) Explosive welding, forming, and compaction. Springer, BerlinCrossRef
2.
go back to reference Carl LR (1944) Brass welds made using detonation impulses. Met Prog 46:102–103 Carl LR (1944) Brass welds made using detonation impulses. Met Prog 46:102–103
3.
go back to reference Crossland B, Bahrani AS (1968) Fundamentals of explosive welding. Contemp Phys 9:71–87CrossRef Crossland B, Bahrani AS (1968) Fundamentals of explosive welding. Contemp Phys 9:71–87CrossRef
5.
go back to reference Wittman RH, Carpenter SH (1975) Explosion welding. Annu Rev Mater Sci 5:177–199CrossRef Wittman RH, Carpenter SH (1975) Explosion welding. Annu Rev Mater Sci 5:177–199CrossRef
6.
go back to reference Kore SD (2018) Magnetic pulse welding. Weld Fundam Process 6:704–710 Kore SD (2018) Magnetic pulse welding. Weld Fundam Process 6:704–710
7.
go back to reference Vivek A, Hansen SR, Liu BC et al (2013) Vaporizing foil actuator: tool for collision welding. J Mater Process Technol 213:2304–2311CrossRef Vivek A, Hansen SR, Liu BC et al (2013) Vaporizing foil actuator: tool for collision welding. J Mater Process Technol 213:2304–2311CrossRef
8.
go back to reference Wang H, Taber G, Liu D et al (2015) Laser impact welding: apparatus design and parametric optimization. J Manufacturing Process 19:118–124CrossRef Wang H, Taber G, Liu D et al (2015) Laser impact welding: apparatus design and parametric optimization. J Manufacturing Process 19:118–124CrossRef
9.
go back to reference Kuz’minLysak VIVI, Kriventsov AN et al (2004) Critical conditions for formation and failure of welded joints during explosive welding. Weld Int 18:223–227CrossRef Kuz’minLysak VIVI, Kriventsov AN et al (2004) Critical conditions for formation and failure of welded joints during explosive welding. Weld Int 18:223–227CrossRef
10.
go back to reference Raoelison RN, Sapanathan T, Padayodi E et al (2016) Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: numerical computations of experimental observations. J Mech Phys Solids 96:147–161CrossRef Raoelison RN, Sapanathan T, Padayodi E et al (2016) Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: numerical computations of experimental observations. J Mech Phys Solids 96:147–161CrossRef
11.
go back to reference Vivek A, Liu BC, Hansen SR et al (2014) Accessing the collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214:1583–1589CrossRef Vivek A, Liu BC, Hansen SR et al (2014) Accessing the collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214:1583–1589CrossRef
12.
go back to reference Zhang Y, Babu SS, Prothe C et al (2011) Application of high velocity impact welding at different length scales. J Mater Process Technol 211:944–952CrossRef Zhang Y, Babu SS, Prothe C et al (2011) Application of high velocity impact welding at different length scales. J Mater Process Technol 211:944–952CrossRef
13.
go back to reference Wittman RH (1973) Influence of collision parameters on the strength and microstructure of explosion-welded aluminum alloys. Proc 2nd Int Symp Use Explos Energy Manufacturer 153–168 Wittman RH (1973) Influence of collision parameters on the strength and microstructure of explosion-welded aluminum alloys. Proc 2nd Int Symp Use Explos Energy Manufacturer 153–168
14.
go back to reference Zakharenko ID (1971) Thermal state of the weld zone in explosive welding. Combust Explos Shock Waves 7:229–231CrossRef Zakharenko ID (1971) Thermal state of the weld zone in explosive welding. Combust Explos Shock Waves 7:229–231CrossRef
15.
go back to reference Zakharenko ID, Sobolenko TM (1971) Thermal effects in the weld zone in explosive welding. Combust Explos Shock Waves 7:373–375CrossRef Zakharenko ID, Sobolenko TM (1971) Thermal effects in the weld zone in explosive welding. Combust Explos Shock Waves 7:373–375CrossRef
16.
go back to reference Zakharenko ID (1972) Critical conditions in detonation welding. Combust Explos Shock Waves 8:341–345CrossRef Zakharenko ID (1972) Critical conditions in detonation welding. Combust Explos Shock Waves 8:341–345CrossRef
17.
go back to reference Efremov VV, Zakharenko ID, Division S (1976) Determination of the upper limit to explosive welding. Fiz Goreniya y Vzryva 3:226–230 Efremov VV, Zakharenko ID, Division S (1976) Determination of the upper limit to explosive welding. Fiz Goreniya y Vzryva 3:226–230
18.
go back to reference Émurlaeva YY, Bataev IA, Zhou Q et al (2019) Welding window: comparison of the Deribas and Wittman approaches and SPH simulation results. Metals (Base) 9(12):1323 Émurlaeva YY, Bataev IA, Zhou Q et al (2019) Welding window: comparison of the Deribas and Wittman approaches and SPH simulation results. Metals (Base) 9(12):1323
19.
go back to reference Lippold JC (2014) Welding metallurgy and weldability. John Wiley & Sons, Hoboken Lippold JC (2014) Welding metallurgy and weldability. John Wiley & Sons, Hoboken
20.
go back to reference Fukuhisa M, Nakagawa H, Sorada K (1982) Dynamic observation of solidification and solidification cracking during welding with an optical microscope (I): solidification front and behavior of cracking (materials, metallurgy, and weldability). Trans JWRI 11(2):67–77 Fukuhisa M, Nakagawa H, Sorada K (1982) Dynamic observation of solidification and solidification cracking during welding with an optical microscope (I): solidification front and behavior of cracking (materials, metallurgy, and weldability). Trans JWRI 11(2):67–77
21.
go back to reference Cross C (2005) Origin of weld-solidification cracking. In Boellinghaus T, Herold H (eds) Hot-crack phenom welds, Springer, Berlin Cross C (2005) Origin of weld-solidification cracking. In Boellinghaus T, Herold H (eds) Hot-crack phenom welds, Springer, Berlin
22.
go back to reference Deribas AA, Zakharenko ID (1975) Determination of limiting collision conditions for the explosive welding of metals. Fiz Goreniya y Vzryva 11:133–135 Deribas AA, Zakharenko ID (1975) Determination of limiting collision conditions for the explosive welding of metals. Fiz Goreniya y Vzryva 11:133–135
25.
go back to reference Mallory HD (1955) Propagation of shock waves in aluminum. J Appl Phys 26:555–559CrossRef Mallory HD (1955) Propagation of shock waves in aluminum. J Appl Phys 26:555–559CrossRef
26.
go back to reference Meyers MA, Murr LETATT (1981) Shock waves and high strain rate phenomena in metals: concepts and applications. Springer, BerlinCrossRef Meyers MA, Murr LETATT (1981) Shock waves and high strain rate phenomena in metals: concepts and applications. Springer, BerlinCrossRef
27.
go back to reference Carvalho GHSFL, Galvão I, Mendes R et al (2018) Explosive welding of aluminum to stainless steel. J Mater Process Technol 262:340–349CrossRef Carvalho GHSFL, Galvão I, Mendes R et al (2018) Explosive welding of aluminum to stainless steel. J Mater Process Technol 262:340–349CrossRef
28.
go back to reference Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. In: 2nd ed. Clarendon Press Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. In: 2nd ed. Clarendon Press
29.
go back to reference Zakharenko ID (1990) Explosion welding of metals. Minsk: Science and Engineering Zakharenko ID (1990) Explosion welding of metals. Minsk: Science and Engineering
30.
go back to reference Kachan MS, Trishin YA (1975) Compression and rarefaction waves in solids. Combust Explos Shock Waves 11:816–819CrossRef Kachan MS, Trishin YA (1975) Compression and rarefaction waves in solids. Combust Explos Shock Waves 11:816–819CrossRef
31.
go back to reference Godunov SK, Deribas AA, Zabrodin AV et al (1970) Hydrodynamic effects in colliding solids. J Comput Phys 5:517–539CrossRef Godunov SK, Deribas AA, Zabrodin AV et al (1970) Hydrodynamic effects in colliding solids. J Comput Phys 5:517–539CrossRef
32.
go back to reference Walsh JM, Shreffler RG, Willig FJ (1953) Limiting conditions for jet formation during high-velocity collisions. J Appl Phys 24:349–359CrossRef Walsh JM, Shreffler RG, Willig FJ (1953) Limiting conditions for jet formation during high-velocity collisions. J Appl Phys 24:349–359CrossRef
33.
34.
go back to reference Akbari-Mousavi SAA, Barrett LM et al (2008) Explosive welding of metal plates. J Mater Process Technol 202:224–239CrossRef Akbari-Mousavi SAA, Barrett LM et al (2008) Explosive welding of metal plates. J Mater Process Technol 202:224–239CrossRef
36.
go back to reference Thurston B, Mao Y, Lewis T et al (2021) Augmentation of plasma-based impulse generation with rapid chemical reactions BT - forming the future. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future, Springer, Cham Thurston B, Mao Y, Lewis T et al (2021) Augmentation of plasma-based impulse generation with rapid chemical reactions BT - forming the future. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future, Springer, Cham
37.
go back to reference Ravichandran G (2003) On the conversion of plastic work into heat during high-strain-rate deformation. AIP Conf Proc 557:557–562 Ravichandran G (2003) On the conversion of plastic work into heat during high-strain-rate deformation. AIP Conf Proc 557:557–562
38.
go back to reference De Rosset WS (2006) Analysis of explosive bonding parameters. Mater Manuf Process 21:634–638CrossRef De Rosset WS (2006) Analysis of explosive bonding parameters. Mater Manuf Process 21:634–638CrossRef
39.
go back to reference Klueh RL (2005) Properties and selection: iron, steel, and high-performance alloys. ASM International Klueh RL (2005) Properties and selection: iron, steel, and high-performance alloys. ASM International
41.
go back to reference Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley
42.
go back to reference Nassiri A, Zhang S, Lee T et al (2017) Numerical investigation of CP-Ti & Cu 110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Process 28:558–564CrossRef Nassiri A, Zhang S, Lee T et al (2017) Numerical investigation of CP-Ti & Cu 110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Process 28:558–564CrossRef
43.
go back to reference Gleason G, Sunny S, Sadeh S et al (2020) Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf 48:204–214CrossRef Gleason G, Sunny S, Sadeh S et al (2020) Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf 48:204–214CrossRef
44.
go back to reference Vivek A, Gonzalez M, Barnett B et al (2023) Process effects on the heterogenous microctructure of an impact welded interface. In: Proc TMS 2023 Annu Meeting, San Diego Vivek A, Gonzalez M, Barnett B et al (2023) Process effects on the heterogenous microctructure of an impact welded interface. In: Proc TMS 2023 Annu Meeting, San Diego
46.
go back to reference Zhang ZL, Liu MB (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220CrossRef Zhang ZL, Liu MB (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220CrossRef
48.
go back to reference Akbari MSAA, Farhadi SP (2009) Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des 30:459–468CrossRef Akbari MSAA, Farhadi SP (2009) Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des 30:459–468CrossRef
49.
go back to reference Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H et al (2019) Investigation of collision surfaces and weld interface in magnetic pulse welding of dissimilar Al/Cu sheets. J Manuf Process 45:356–367CrossRef Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H et al (2019) Investigation of collision surfaces and weld interface in magnetic pulse welding of dissimilar Al/Cu sheets. J Manuf Process 45:356–367CrossRef
50.
go back to reference Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087CrossRef Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087CrossRef
51.
go back to reference Zeng XY, Li XQ, Li XJ et al (2019) Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol 104:2607–2617CrossRef Zeng XY, Li XQ, Li XJ et al (2019) Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol 104:2607–2617CrossRef
52.
go back to reference Metals R (2010) Standard specification for titanium and titanium alloy strip, sheet, and plate 1. Annu B ASTM Stand 03:1–9 Metals R (2010) Standard specification for titanium and titanium alloy strip, sheet, and plate 1. Annu B ASTM Stand 03:1–9
Metadata
Title
Shock effects on the upper limit of the collision weld process window
Authors
Blake Barnett
Anupam Vivek
Glenn Daehn
Publication date
27-01-2024
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 2/2024
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-023-00472-y

Other articles of this Issue 2/2024

Advances in Manufacturing 2/2024 Go to the issue

Premium Partners