Skip to main content

27.01.2024

Shock effects on the upper limit of the collision weld process window

verfasst von: Blake Barnett, Anupam Vivek, Glenn Daehn

Erschienen in: Advances in Manufacturing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The maximum flyer impact velocity based on a dynamic solidification cracking mechanism is proposed to describe the upper limit of collision welding process windows. Thus, the upper limit of the weld window is governed by the evolution of dynamic stresses and temperatures at the weld interface. Current formulations for the upper limit of the collision weld window assume that both the flyer and target are made of the same material and approximate stress propagation velocities using the acoustic velocity or the shear wave velocity of the weld material. However, collision welding fundamentally depends on the impacts that generate shockwaves in weld members, which can dominate the stress propagation velocities in thin weld sections. Therefore, this study proposes an alternative weld window upper limit that approximates stress propagation using shock velocities calculated from modified 1-D Rankine-Hugoniot relations. The shock upper limit is validated against the experimental and simulation data in the collision welding literature, and offers a design tool to rapidly predict more accurate optimal collision weld process limits for similar and dissimilar weld couples compared to existing models without the cost or complexity of high-fidelity simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Blazynski TZ (1983) Explosive welding, forming, and compaction. Springer, BerlinCrossRef Blazynski TZ (1983) Explosive welding, forming, and compaction. Springer, BerlinCrossRef
2.
Zurück zum Zitat Carl LR (1944) Brass welds made using detonation impulses. Met Prog 46:102–103 Carl LR (1944) Brass welds made using detonation impulses. Met Prog 46:102–103
3.
Zurück zum Zitat Crossland B, Bahrani AS (1968) Fundamentals of explosive welding. Contemp Phys 9:71–87CrossRef Crossland B, Bahrani AS (1968) Fundamentals of explosive welding. Contemp Phys 9:71–87CrossRef
5.
Zurück zum Zitat Wittman RH, Carpenter SH (1975) Explosion welding. Annu Rev Mater Sci 5:177–199CrossRef Wittman RH, Carpenter SH (1975) Explosion welding. Annu Rev Mater Sci 5:177–199CrossRef
6.
Zurück zum Zitat Kore SD (2018) Magnetic pulse welding. Weld Fundam Process 6:704–710 Kore SD (2018) Magnetic pulse welding. Weld Fundam Process 6:704–710
7.
Zurück zum Zitat Vivek A, Hansen SR, Liu BC et al (2013) Vaporizing foil actuator: tool for collision welding. J Mater Process Technol 213:2304–2311CrossRef Vivek A, Hansen SR, Liu BC et al (2013) Vaporizing foil actuator: tool for collision welding. J Mater Process Technol 213:2304–2311CrossRef
8.
Zurück zum Zitat Wang H, Taber G, Liu D et al (2015) Laser impact welding: apparatus design and parametric optimization. J Manufacturing Process 19:118–124CrossRef Wang H, Taber G, Liu D et al (2015) Laser impact welding: apparatus design and parametric optimization. J Manufacturing Process 19:118–124CrossRef
9.
Zurück zum Zitat Kuz’minLysak VIVI, Kriventsov AN et al (2004) Critical conditions for formation and failure of welded joints during explosive welding. Weld Int 18:223–227CrossRef Kuz’minLysak VIVI, Kriventsov AN et al (2004) Critical conditions for formation and failure of welded joints during explosive welding. Weld Int 18:223–227CrossRef
10.
Zurück zum Zitat Raoelison RN, Sapanathan T, Padayodi E et al (2016) Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: numerical computations of experimental observations. J Mech Phys Solids 96:147–161CrossRef Raoelison RN, Sapanathan T, Padayodi E et al (2016) Interfacial kinematics and governing mechanisms under the influence of high strain rate impact conditions: numerical computations of experimental observations. J Mech Phys Solids 96:147–161CrossRef
11.
Zurück zum Zitat Vivek A, Liu BC, Hansen SR et al (2014) Accessing the collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214:1583–1589CrossRef Vivek A, Liu BC, Hansen SR et al (2014) Accessing the collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets. J Mater Process Technol 214:1583–1589CrossRef
12.
Zurück zum Zitat Zhang Y, Babu SS, Prothe C et al (2011) Application of high velocity impact welding at different length scales. J Mater Process Technol 211:944–952CrossRef Zhang Y, Babu SS, Prothe C et al (2011) Application of high velocity impact welding at different length scales. J Mater Process Technol 211:944–952CrossRef
13.
Zurück zum Zitat Wittman RH (1973) Influence of collision parameters on the strength and microstructure of explosion-welded aluminum alloys. Proc 2nd Int Symp Use Explos Energy Manufacturer 153–168 Wittman RH (1973) Influence of collision parameters on the strength and microstructure of explosion-welded aluminum alloys. Proc 2nd Int Symp Use Explos Energy Manufacturer 153–168
14.
Zurück zum Zitat Zakharenko ID (1971) Thermal state of the weld zone in explosive welding. Combust Explos Shock Waves 7:229–231CrossRef Zakharenko ID (1971) Thermal state of the weld zone in explosive welding. Combust Explos Shock Waves 7:229–231CrossRef
15.
Zurück zum Zitat Zakharenko ID, Sobolenko TM (1971) Thermal effects in the weld zone in explosive welding. Combust Explos Shock Waves 7:373–375CrossRef Zakharenko ID, Sobolenko TM (1971) Thermal effects in the weld zone in explosive welding. Combust Explos Shock Waves 7:373–375CrossRef
16.
Zurück zum Zitat Zakharenko ID (1972) Critical conditions in detonation welding. Combust Explos Shock Waves 8:341–345CrossRef Zakharenko ID (1972) Critical conditions in detonation welding. Combust Explos Shock Waves 8:341–345CrossRef
17.
Zurück zum Zitat Efremov VV, Zakharenko ID, Division S (1976) Determination of the upper limit to explosive welding. Fiz Goreniya y Vzryva 3:226–230 Efremov VV, Zakharenko ID, Division S (1976) Determination of the upper limit to explosive welding. Fiz Goreniya y Vzryva 3:226–230
18.
Zurück zum Zitat Émurlaeva YY, Bataev IA, Zhou Q et al (2019) Welding window: comparison of the Deribas and Wittman approaches and SPH simulation results. Metals (Base) 9(12):1323 Émurlaeva YY, Bataev IA, Zhou Q et al (2019) Welding window: comparison of the Deribas and Wittman approaches and SPH simulation results. Metals (Base) 9(12):1323
19.
Zurück zum Zitat Lippold JC (2014) Welding metallurgy and weldability. John Wiley & Sons, Hoboken Lippold JC (2014) Welding metallurgy and weldability. John Wiley & Sons, Hoboken
20.
Zurück zum Zitat Fukuhisa M, Nakagawa H, Sorada K (1982) Dynamic observation of solidification and solidification cracking during welding with an optical microscope (I): solidification front and behavior of cracking (materials, metallurgy, and weldability). Trans JWRI 11(2):67–77 Fukuhisa M, Nakagawa H, Sorada K (1982) Dynamic observation of solidification and solidification cracking during welding with an optical microscope (I): solidification front and behavior of cracking (materials, metallurgy, and weldability). Trans JWRI 11(2):67–77
21.
Zurück zum Zitat Cross C (2005) Origin of weld-solidification cracking. In Boellinghaus T, Herold H (eds) Hot-crack phenom welds, Springer, Berlin Cross C (2005) Origin of weld-solidification cracking. In Boellinghaus T, Herold H (eds) Hot-crack phenom welds, Springer, Berlin
22.
Zurück zum Zitat Deribas AA, Zakharenko ID (1975) Determination of limiting collision conditions for the explosive welding of metals. Fiz Goreniya y Vzryva 11:133–135 Deribas AA, Zakharenko ID (1975) Determination of limiting collision conditions for the explosive welding of metals. Fiz Goreniya y Vzryva 11:133–135
25.
Zurück zum Zitat Mallory HD (1955) Propagation of shock waves in aluminum. J Appl Phys 26:555–559CrossRef Mallory HD (1955) Propagation of shock waves in aluminum. J Appl Phys 26:555–559CrossRef
26.
Zurück zum Zitat Meyers MA, Murr LETATT (1981) Shock waves and high strain rate phenomena in metals: concepts and applications. Springer, BerlinCrossRef Meyers MA, Murr LETATT (1981) Shock waves and high strain rate phenomena in metals: concepts and applications. Springer, BerlinCrossRef
27.
Zurück zum Zitat Carvalho GHSFL, Galvão I, Mendes R et al (2018) Explosive welding of aluminum to stainless steel. J Mater Process Technol 262:340–349CrossRef Carvalho GHSFL, Galvão I, Mendes R et al (2018) Explosive welding of aluminum to stainless steel. J Mater Process Technol 262:340–349CrossRef
28.
Zurück zum Zitat Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. In: 2nd ed. Clarendon Press Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. In: 2nd ed. Clarendon Press
29.
Zurück zum Zitat Zakharenko ID (1990) Explosion welding of metals. Minsk: Science and Engineering Zakharenko ID (1990) Explosion welding of metals. Minsk: Science and Engineering
30.
Zurück zum Zitat Kachan MS, Trishin YA (1975) Compression and rarefaction waves in solids. Combust Explos Shock Waves 11:816–819CrossRef Kachan MS, Trishin YA (1975) Compression and rarefaction waves in solids. Combust Explos Shock Waves 11:816–819CrossRef
31.
Zurück zum Zitat Godunov SK, Deribas AA, Zabrodin AV et al (1970) Hydrodynamic effects in colliding solids. J Comput Phys 5:517–539CrossRef Godunov SK, Deribas AA, Zabrodin AV et al (1970) Hydrodynamic effects in colliding solids. J Comput Phys 5:517–539CrossRef
32.
Zurück zum Zitat Walsh JM, Shreffler RG, Willig FJ (1953) Limiting conditions for jet formation during high-velocity collisions. J Appl Phys 24:349–359CrossRef Walsh JM, Shreffler RG, Willig FJ (1953) Limiting conditions for jet formation during high-velocity collisions. J Appl Phys 24:349–359CrossRef
33.
Zurück zum Zitat Meyer MA (1994) Dynamic behavior of materials. John Wiley & Sons, HobokenCrossRef Meyer MA (1994) Dynamic behavior of materials. John Wiley & Sons, HobokenCrossRef
34.
Zurück zum Zitat Akbari-Mousavi SAA, Barrett LM et al (2008) Explosive welding of metal plates. J Mater Process Technol 202:224–239CrossRef Akbari-Mousavi SAA, Barrett LM et al (2008) Explosive welding of metal plates. J Mater Process Technol 202:224–239CrossRef
36.
Zurück zum Zitat Thurston B, Mao Y, Lewis T et al (2021) Augmentation of plasma-based impulse generation with rapid chemical reactions BT - forming the future. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future, Springer, Cham Thurston B, Mao Y, Lewis T et al (2021) Augmentation of plasma-based impulse generation with rapid chemical reactions BT - forming the future. In: Daehn G, Cao J, Kinsey B et al (eds) Forming the future, Springer, Cham
37.
Zurück zum Zitat Ravichandran G (2003) On the conversion of plastic work into heat during high-strain-rate deformation. AIP Conf Proc 557:557–562 Ravichandran G (2003) On the conversion of plastic work into heat during high-strain-rate deformation. AIP Conf Proc 557:557–562
38.
Zurück zum Zitat De Rosset WS (2006) Analysis of explosive bonding parameters. Mater Manuf Process 21:634–638CrossRef De Rosset WS (2006) Analysis of explosive bonding parameters. Mater Manuf Process 21:634–638CrossRef
39.
Zurück zum Zitat Klueh RL (2005) Properties and selection: iron, steel, and high-performance alloys. ASM International Klueh RL (2005) Properties and selection: iron, steel, and high-performance alloys. ASM International
41.
Zurück zum Zitat Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley Marsh SP (1980) LASL shock Hugoniot data. University of California Press, Berkeley
42.
Zurück zum Zitat Nassiri A, Zhang S, Lee T et al (2017) Numerical investigation of CP-Ti & Cu 110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Process 28:558–564CrossRef Nassiri A, Zhang S, Lee T et al (2017) Numerical investigation of CP-Ti & Cu 110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods. J Manuf Process 28:558–564CrossRef
43.
Zurück zum Zitat Gleason G, Sunny S, Sadeh S et al (2020) Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf 48:204–214CrossRef Gleason G, Sunny S, Sadeh S et al (2020) Eulerian modeling of plasma-pressure driven laser impact weld processes. Procedia Manuf 48:204–214CrossRef
44.
Zurück zum Zitat Vivek A, Gonzalez M, Barnett B et al (2023) Process effects on the heterogenous microctructure of an impact welded interface. In: Proc TMS 2023 Annu Meeting, San Diego Vivek A, Gonzalez M, Barnett B et al (2023) Process effects on the heterogenous microctructure of an impact welded interface. In: Proc TMS 2023 Annu Meeting, San Diego
46.
Zurück zum Zitat Zhang ZL, Liu MB (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220CrossRef Zhang ZL, Liu MB (2019) Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. J Manuf Process 41:208–220CrossRef
48.
Zurück zum Zitat Akbari MSAA, Farhadi SP (2009) Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des 30:459–468CrossRef Akbari MSAA, Farhadi SP (2009) Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des 30:459–468CrossRef
49.
Zurück zum Zitat Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H et al (2019) Investigation of collision surfaces and weld interface in magnetic pulse welding of dissimilar Al/Cu sheets. J Manuf Process 45:356–367CrossRef Sarvari M, Abdollah-zadeh A, Naffakh-Moosavy H et al (2019) Investigation of collision surfaces and weld interface in magnetic pulse welding of dissimilar Al/Cu sheets. J Manuf Process 45:356–367CrossRef
50.
Zurück zum Zitat Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087CrossRef Bataev IA, Ogneva TS, Bataev AA et al (2015) Explosively welded multilayer Ni-Al composites. Mater Des 88:1082–1087CrossRef
51.
Zurück zum Zitat Zeng XY, Li XQ, Li XJ et al (2019) Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol 104:2607–2617CrossRef Zeng XY, Li XQ, Li XJ et al (2019) Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol 104:2607–2617CrossRef
52.
Zurück zum Zitat Metals R (2010) Standard specification for titanium and titanium alloy strip, sheet, and plate 1. Annu B ASTM Stand 03:1–9 Metals R (2010) Standard specification for titanium and titanium alloy strip, sheet, and plate 1. Annu B ASTM Stand 03:1–9
Metadaten
Titel
Shock effects on the upper limit of the collision weld process window
verfasst von
Blake Barnett
Anupam Vivek
Glenn Daehn
Publikationsdatum
27.01.2024
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-023-00472-y

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.