Skip to main content
Top

2019 | OriginalPaper | Chapter

2. SiC Single Crystal Growth and Substrate Processing

Authors : Xiangang Xu, Xiaobo Hu, Xiufang Chen

Published in: Light-Emitting Diodes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon carbide (SiC) is the typical representative of the third-generation semiconductor materials. Due to the wide bandgap, high thermal conductivity, high saturated carrier mobility, high threshold breakdown electric field strength, and high chemical stability, it is an ideal substrate for the fabrication of power electronics and radio frequency devices operating at extreme environments, such as high temperature, high frequency, high power, and strong radiation. Therefore, SiC has extensive applications in white-light illumination, automobile electronic, radar communication, aeronautic and aerospace, and nuclear radiation. Since the 1990s, SiC has attracted much attention due to the breakthrough in SiC single crystal growth technology. Up to now, 6” SiC substrates are commercially available. In this chapter, we mainly introduce the SiC single crystal growth and substrate processing technologies. In Sect. 2.1, SiC material development history and single crystal growth method were described. In Sect. 2.2, the structure and properties of SiC were given. In Sect. 2.3, we focus on the SiC single crystal growth by PVT method. In Sect. 2.4, the formation mechanism of structural defects in SiC and how to control these defects were presented. In Sect. 2.5, the control of electrical behavior of SiC was discussed. In Sect. 2.6, the SiC substrate processing technology was introduced. We wish this chapter has the reference value for SiC crystal grower and substrate processing technician.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409 (1996)CrossRef J.B. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid State Electron. 39, 1409 (1996)CrossRef
2.
go back to reference R. Han, X. Xu, X. Hu, et al., Development of bulk SiC single crystal grown by physical vapor transport method. Opt. Mater. 23, 415 (2003)CrossRef R. Han, X. Xu, X. Hu, et al., Development of bulk SiC single crystal grown by physical vapor transport method. Opt. Mater. 23, 415 (2003)CrossRef
4.
go back to reference E.G. Acheson Production of artificial crystalline carbonaceous materials, carborundum. English Patent 17911 (1892) E.G. Acheson Production of artificial crystalline carbonaceous materials, carborundum. English Patent 17911 (1892)
5.
go back to reference H. Moissan, Étude du siliciure de carbone de la météorite de cañon diablo. C. R. Acad. Sci. 140, 405 (1905) H. Moissan, Étude du siliciure de carbone de la météorite de cañon diablo. C. R. Acad. Sci. 140, 405 (1905)
6.
7.
go back to reference W.F. Kmippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 16 (1963) W.F. Kmippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 16 (1963)
8.
go back to reference Y.M. Tairov, V.F. Tsvetkov, General principles of growing large-size single crystals of various silicon carbide polytypes. J. Cryst. Growth 52, 146 (1981)CrossRef Y.M. Tairov, V.F. Tsvetkov, General principles of growing large-size single crystals of various silicon carbide polytypes. J. Cryst. Growth 52, 146 (1981)CrossRef
9.
go back to reference A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, et al., Bulk growth of large area SiC crystals. Mater. Sci. Forum 858, 5 (2016)CrossRef A.R. Powell, J.J. Sumakeris, Y. Khlebnikov, et al., Bulk growth of large area SiC crystals. Mater. Sci. Forum 858, 5 (2016)CrossRef
10.
go back to reference D.H. Hofmann, M.H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Mater. Sci. Eng. B 61, 29 (1999)CrossRef D.H. Hofmann, M.H. Müller, Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Mater. Sci. Eng. B 61, 29 (1999)CrossRef
11.
go back to reference K. Danno, H. Saitoh, A. Seki, et al., High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt. Mater. Sci. Forum 645, 13 (2010)CrossRef K. Danno, H. Saitoh, A. Seki, et al., High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt. Mater. Sci. Forum 645, 13 (2010)CrossRef
12.
go back to reference J. Kojima, Y. Tokuda, E. Makino, N. Sugiyama, et al., Developing technologies of SiC gas source growth method. Mater. Sci. Forum 858, 23 (2015)CrossRef J. Kojima, Y. Tokuda, E. Makino, N. Sugiyama, et al., Developing technologies of SiC gas source growth method. Mater. Sci. Forum 858, 23 (2015)CrossRef
13.
go back to reference G.R. Fisher, P. Barnes, Toward a unified view of polytypism in silicon carbide. Philos. Mag. B 61, 217 (1990)CrossRef G.R. Fisher, P. Barnes, Toward a unified view of polytypism in silicon carbide. Philos. Mag. B 61, 217 (1990)CrossRef
14.
go back to reference R.P. Adrian, B.R. Larry, SiC materials-progress, status, and potential roadblocks. Proc. IEEE 90, 942 (2002)CrossRef R.P. Adrian, B.R. Larry, SiC materials-progress, status, and potential roadblocks. Proc. IEEE 90, 942 (2002)CrossRef
15.
go back to reference S.Y. Kaprov, Y.N. Makarov, M.S. Ramm, Simulation of sublimation growth of SiC single crystals. Phys. Status Solidi B 202, 201 (1997)CrossRef S.Y. Kaprov, Y.N. Makarov, M.S. Ramm, Simulation of sublimation growth of SiC single crystals. Phys. Status Solidi B 202, 201 (1997)CrossRef
16.
go back to reference M. Pons, E. Blanquet, J.M. Dedulle, Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc. 143, 3727 (1996)CrossRef M. Pons, E. Blanquet, J.M. Dedulle, Thermodynamic heat transfer and mass transport modeling of the sublimation growth of silicon carbide crystals. J. Electrochem. Soc. 143, 3727 (1996)CrossRef
17.
go back to reference M. Selder, L. Kadinski, Y. Makarov, et al., Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. J. Cryst. Growth 211, 333 (2000)CrossRef M. Selder, L. Kadinski, Y. Makarov, et al., Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. J. Cryst. Growth 211, 333 (2000)CrossRef
18.
go back to reference P. Pirouz, On micropipes and nanopipes in SiC and GaN. Philos. Mag. A 78, 727 (1998)CrossRef P. Pirouz, On micropipes and nanopipes in SiC and GaN. Philos. Mag. A 78, 727 (1998)CrossRef
19.
go back to reference F.C. Frank, Capillary equilibria of dislocated crystals. Acta Cryst 4, 407 (1951)CrossRef F.C. Frank, Capillary equilibria of dislocated crystals. Acta Cryst 4, 407 (1951)CrossRef
20.
go back to reference S.I. Maximenko, P. Pirouz, T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Sci. Forum 527-529, 439 (2006)CrossRef S.I. Maximenko, P. Pirouz, T.S. Sudarshan, Open core dislocations and surface energy of SiC. Mater. Sci. Forum 527-529, 439 (2006)CrossRef
21.
go back to reference S.I. Weimin, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr., Hollow-core screw dislocations in 6H-SiC single crystals: a test of Frank’s theory. J. Electron. Mater. 26, 128 (1997)CrossRef S.I. Weimin, M. Dudley, R. Glass, V. Tsvetkov, C.H. Carter Jr., Hollow-core screw dislocations in 6H-SiC single crystals: a test of Frank’s theory. J. Electron. Mater. 26, 128 (1997)CrossRef
22.
go back to reference P. Krishna, S.S. Jiang, A.R. Lang, An optical and X-ray topographic study of giant screw dislocations in silicon carbide. J. Cryst. Growth 71, 41 (1985)CrossRef P. Krishna, S.S. Jiang, A.R. Lang, An optical and X-ray topographic study of giant screw dislocations in silicon carbide. J. Cryst. Growth 71, 41 (1985)CrossRef
23.
go back to reference X.R. Huang, M. Dudley, V.M. Vetter, W. Huang, S. Wang, Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl. Phys. Lett. 74, 355 (1999) X.R. Huang, M. Dudley, V.M. Vetter, W. Huang, S. Wang, Direct evidence of micropipe-related pure superscrew dislocations in SiC. Appl. Phys. Lett. 74, 355 (1999)
24.
go back to reference X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr., Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image. J. Appl. Crystallogr. 32, 516 (1999)CrossRef X.R. Huang, M. Dudley, W.M. Vetter, W. Huang, W. Si, C.H. Carter Jr., Superscrew dislocation contrast on synchrotron white-beam topographs: an accurate description of the direct dislocation image. J. Appl. Crystallogr. 32, 516 (1999)CrossRef
25.
go back to reference J. Heindl, W. Dorsch, H.P. Strunk, Dislocation content of micropipes in SiC. Phys. Rev. Lett. 80, 740 (1998)CrossRef J. Heindl, W. Dorsch, H.P. Strunk, Dislocation content of micropipes in SiC. Phys. Rev. Lett. 80, 740 (1998)CrossRef
26.
go back to reference T.A. Kuhr, E.K. Sanchez, M. Skowronski, Hexagonal voids and the formation of micropipes during SiC sublimation growth. J. Appl. Phys. 89, 4625 (2001)CrossRef T.A. Kuhr, E.K. Sanchez, M. Skowronski, Hexagonal voids and the formation of micropipes during SiC sublimation growth. J. Appl. Phys. 89, 4625 (2001)CrossRef
27.
go back to reference R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr., SiC seeded crystal growth. Phys. Status Solidi A 202, 149 (1997)CrossRef R.C. Glass, D. Henshall, V.F. Tsvetkov, C.H. Carter Jr., SiC seeded crystal growth. Phys. Status Solidi A 202, 149 (1997)CrossRef
28.
go back to reference H. Shiomi, H. Kinoshita, T. Furusho, T. Hayashi, et al., Crystal growth of micropipe free 4H-SiC on 4H-SiC (0 3 -3 8) seed and high purity semi-insulating 6H-SiC. J. Cryst. Growth 292, 188 (2006)CrossRef H. Shiomi, H. Kinoshita, T. Furusho, T. Hayashi, et al., Crystal growth of micropipe free 4H-SiC on 4H-SiC (0 3 -3 8) seed and high purity semi-insulating 6H-SiC. J. Cryst. Growth 292, 188 (2006)CrossRef
29.
go back to reference J. Li, O. Filip, B.M. Epelbaum, X. Xu, M. Bickermann, A. Winnacker, Growth of 4H-SiC on rhombohedral (0 1 -1 4) plane seeds. J. Cryst. Growth 308, 41 (2007)CrossRef J. Li, O. Filip, B.M. Epelbaum, X. Xu, M. Bickermann, A. Winnacker, Growth of 4H-SiC on rhombohedral (0 1 -1 4) plane seeds. J. Cryst. Growth 308, 41 (2007)CrossRef
30.
go back to reference W.F. Knippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 161 (1963) W.F. Knippenberg, Growth phenomena in silicon carbide. Philips Res. Rep. 18, 161 (1963)
31.
go back to reference T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, et al., Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory. J. Cryst. Growth 352, 177 (2012)CrossRef T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, et al., Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory. J. Cryst. Growth 352, 177 (2012)CrossRef
32.
go back to reference K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S.I. Nishizawa, Thermodynamic analysis of SiC polytype growth by physical vapor transport method. J. Cryst. Growth 324, 78 (2011)CrossRef K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano, S.I. Nishizawa, Thermodynamic analysis of SiC polytype growth by physical vapor transport method. J. Cryst. Growth 324, 78 (2011)CrossRef
33.
go back to reference N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, N. Kamiya, Step structures and dislocations of SiC single crystals grown by modified lely method. J. Cryst. Growth 191, 84 (1998)CrossRef N. Sugiyama, A. Okamoto, K. Okumura, T. Tani, N. Kamiya, Step structures and dislocations of SiC single crystals grown by modified lely method. J. Cryst. Growth 191, 84 (1998)CrossRef
34.
go back to reference Y. Nakano, T. Nakamura, A. Kamisawa, H. Takasu, Investigation of pits formed at oxidation on 4H-SiC. Mater. Sci. Forum 600–630, 377 (2009) Y. Nakano, T. Nakamura, A. Kamisawa, H. Takasu, Investigation of pits formed at oxidation on 4H-SiC. Mater. Sci. Forum 600–630, 377 (2009)
35.
go back to reference R. Singh, K.G. Irvine, D.C. Capell, J.T. Richmond, D. Berning, A.R. Hefner, Large area ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron. Devices 49, 2308 (2002)CrossRef R. Singh, K.G. Irvine, D.C. Capell, J.T. Richmond, D. Berning, A.R. Hefner, Large area ultra-high voltage 4H-SiC p-i-n rectifiers. IEEE Trans. Electron. Devices 49, 2308 (2002)CrossRef
36.
go back to reference J. Zhang, P. Alexandrov, T. Burke, J.H. Zhao, 4H-SiC power bipolar junction transistor with a very low specific on-resistance of 2.9 mΩ cm2. IEEE Electron Device Lett. 27, 368 (2006)CrossRef J. Zhang, P. Alexandrov, T. Burke, J.H. Zhao, 4H-SiC power bipolar junction transistor with a very low specific on-resistance of 2.9 mΩ cm2. IEEE Electron Device Lett. 27, 368 (2006)CrossRef
37.
go back to reference S. Ryu, A.K. Agarwal, R. Singh, J.W. Palmour, 1800V NPN bipolar junction transistors in 4H-SiC, 2001. IEEE Electron Device Lett. 22, 124 (2001)CrossRef S. Ryu, A.K. Agarwal, R. Singh, J.W. Palmour, 1800V NPN bipolar junction transistors in 4H-SiC, 2001. IEEE Electron Device Lett. 22, 124 (2001)CrossRef
38.
go back to reference B. Nakamura, I. Tunjishima, S. Yamaguchi, T. Ito, et al., Ultrahigh quality silicon carbide single crystals. Nature 430, 1009 (2004)CrossRef B. Nakamura, I. Tunjishima, S. Yamaguchi, T. Ito, et al., Ultrahigh quality silicon carbide single crystals. Nature 430, 1009 (2004)CrossRef
39.
go back to reference N. Ohtani, M. Katsuno, J. Takahashi, et al., Impurity incorporation kinetics during modified-lely growth of SiC. J. Appl. Phys. 83, 4487 (1998)CrossRef N. Ohtani, M. Katsuno, J. Takahashi, et al., Impurity incorporation kinetics during modified-lely growth of SiC. J. Appl. Phys. 83, 4487 (1998)CrossRef
40.
go back to reference K. Onoue, T. Nishikawa, M. Katsumo, et al., Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H-SiC. Jpn. J. Appl. Phys. 35, 2240 (1996)CrossRef K. Onoue, T. Nishikawa, M. Katsumo, et al., Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H-SiC. Jpn. J. Appl. Phys. 35, 2240 (1996)CrossRef
41.
go back to reference S. Jang, T. Kimoto, H. Matsunami, Deep levels in 6H-SiC wafers and step controlled epitaxial layers. Appl. Phys. Lett. 65, 581 (1994)CrossRef S. Jang, T. Kimoto, H. Matsunami, Deep levels in 6H-SiC wafers and step controlled epitaxial layers. Appl. Phys. Lett. 65, 581 (1994)CrossRef
42.
go back to reference A.O. Evwaraye, S.R. Smith, W.C. Mitchel, Shallow and deep levels in n-type 4H-SiC. J. Appl. Phys. 79, 7726 (1996)CrossRef A.O. Evwaraye, S.R. Smith, W.C. Mitchel, Shallow and deep levels in n-type 4H-SiC. J. Appl. Phys. 79, 7726 (1996)CrossRef
43.
go back to reference M. Katsuno, M. Nakabayashi, T. Fujimoto, et al., Stacking fault formation in highly nitrogen-doped 4H-SiC substrates with different surface preparation conditions. Mater. Sci. Forum 600-630, 341 (2009) M. Katsuno, M. Nakabayashi, T. Fujimoto, et al., Stacking fault formation in highly nitrogen-doped 4H-SiC substrates with different surface preparation conditions. Mater. Sci. Forum 600-630, 341 (2009)
44.
go back to reference N. Ohtani, M. Katsuno, M. Nakabayashi, et al., Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport. J. Cryst. Growth 311, 1475 (2009)CrossRef N. Ohtani, M. Katsuno, M. Nakabayashi, et al., Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport. J. Cryst. Growth 311, 1475 (2009)CrossRef
45.
go back to reference T. Kato, K. Eto, S. Takagi, T. Miura, et al., Growth of low resistivity n-type 4H-SiC bulk crystals by sublimation method using co-doping technique. Mater. Sci. Forum 778-780, 47 (2014)CrossRef T. Kato, K. Eto, S. Takagi, T. Miura, et al., Growth of low resistivity n-type 4H-SiC bulk crystals by sublimation method using co-doping technique. Mater. Sci. Forum 778-780, 47 (2014)CrossRef
46.
go back to reference N. Schulze, J. Gajowski, K. Semmelroth, M. Laube, G. Pensl, Growth of highly aluminum-doped p-type 6H-SiC single crystals by the modified lely method. Mater. Sci. Forum 353-356, 45 (2001)CrossRef N. Schulze, J. Gajowski, K. Semmelroth, M. Laube, G. Pensl, Growth of highly aluminum-doped p-type 6H-SiC single crystals by the modified lely method. Mater. Sci. Forum 353-356, 45 (2001)CrossRef
47.
go back to reference P. Hens, U. Kunecke, P. Wellmann, Aluminum p-type doping of bulk SiC single crystals by tri-methyl-aluminum. Mater. Sci. Forum 600-603, 19 (2009)CrossRef P. Hens, U. Kunecke, P. Wellmann, Aluminum p-type doping of bulk SiC single crystals by tri-methyl-aluminum. Mater. Sci. Forum 600-603, 19 (2009)CrossRef
48.
go back to reference K. Eto, H. Suo, T. Kato, H. Okumura, Growth of low resistivity p-type 4H-SiC crystals by sublimation with using aluminum and nitrogen co-doping. Mater. Sci. Forum 858, 77 (2015)CrossRef K. Eto, H. Suo, T. Kato, H. Okumura, Growth of low resistivity p-type 4H-SiC crystals by sublimation with using aluminum and nitrogen co-doping. Mater. Sci. Forum 858, 77 (2015)CrossRef
49.
go back to reference J. Schneider, H.D. Muller, M. Maier, W. Wilkening, F. Fuchs, Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl. Phys. Lett. 56, 1184 (1990)CrossRef J. Schneider, H.D. Muller, M. Maier, W. Wilkening, F. Fuchs, Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide. Appl. Phys. Lett. 56, 1184 (1990)CrossRef
50.
go back to reference M. Bickermann, R. Weingartner, A. Winnacker, On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield. J. Cryst. Growth 254, 390 (2003)CrossRef M. Bickermann, R. Weingartner, A. Winnacker, On the preparation of vanadium doped PVT grown SiC boules with high semi-insulating yield. J. Cryst. Growth 254, 390 (2003)CrossRef
51.
go back to reference G. Augustine, V. Balakrishna, C.D. Brandt, Growth and characterization of high purity SiC single crystals. J. Cryst. Growth 211, 339 (2000)CrossRef G. Augustine, V. Balakrishna, C.D. Brandt, Growth and characterization of high purity SiC single crystals. J. Cryst. Growth 211, 339 (2000)CrossRef
52.
go back to reference J.R. Jenny, S. Muller, A. Powell, V.F. Tsvetkov, et al., High purity semi-insulating 4H-SiC grown by the seeded sublimation method. J. Electron. Mater. 31, 366 (2002)CrossRef J.R. Jenny, S. Muller, A. Powell, V.F. Tsvetkov, et al., High purity semi-insulating 4H-SiC grown by the seeded sublimation method. J. Electron. Mater. 31, 366 (2002)CrossRef
53.
go back to reference J.R. Jenny, D.P. Malta, S. Muller, et al., High purity semi-insulating 4H-SiC for microwave device applications. J. Electron. Mater. 32, 432 (2003)CrossRef J.R. Jenny, D.P. Malta, S. Muller, et al., High purity semi-insulating 4H-SiC for microwave device applications. J. Electron. Mater. 32, 432 (2003)CrossRef
54.
go back to reference T. Sasaki, T. Matsuoka, Substrate-polarity dependence of metal-organic vapor-phase epitaxy-grown GaN on SiC. J. Appl. Phys. 64, 4531 (1988)CrossRef T. Sasaki, T. Matsuoka, Substrate-polarity dependence of metal-organic vapor-phase epitaxy-grown GaN on SiC. J. Appl. Phys. 64, 4531 (1988)CrossRef
55.
go back to reference P. Kung, C.J. Sun, A. Saxler, H. Ohsato, M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 75, 4515 (1994)CrossRef P. Kung, C.J. Sun, A. Saxler, H. Ohsato, M. Razeghi, Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates. J. Appl. Phys. 75, 4515 (1994)CrossRef
56.
go back to reference S. Yu, S. Karpov, A.V. Kulik, I.A. Zhmakin, Y.N. Makarov, et al., Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000)CrossRef S. Yu, S. Karpov, A.V. Kulik, I.A. Zhmakin, Y.N. Makarov, et al., Analysis of sublimation growth of bulk SiC crystals in tantalum container. J. Cryst. Growth 211, 347 (2000)CrossRef
57.
go back to reference N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, et al., Growth of large high-quality SiC single crystals. J. Cryst. Growth 237–239, 1180 (2002)CrossRef N. Ohtani, T. Fujimoto, M. Katsuno, T. Aigo, et al., Growth of large high-quality SiC single crystals. J. Cryst. Growth 237–239, 1180 (2002)CrossRef
58.
go back to reference W.I. Clark, A.J. Shih, C.W. Hardin, R.I. Lemaster, et al., Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force. Int J Mach Tool Manu 43, 523 (2003)CrossRef W.I. Clark, A.J. Shih, C.W. Hardin, R.I. Lemaster, et al., Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force. Int J Mach Tool Manu 43, 523 (2003)CrossRef
59.
go back to reference H.K. Xu, S. Jahanmir, L.K. Ives, Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res. 11, 1717 (1996)CrossRef H.K. Xu, S. Jahanmir, L.K. Ives, Material removal and damage formation mechanisms in grinding silicon nitride. J. Mater. Res. 11, 1717 (1996)CrossRef
60.
go back to reference M. Forsberg, N. Keskitalo, J. Olsson, Effect of dopants on chemical mechanical polishing of silicon. Microelectron. Eng. 60, 149 (2002)CrossRef M. Forsberg, N. Keskitalo, J. Olsson, Effect of dopants on chemical mechanical polishing of silicon. Microelectron. Eng. 60, 149 (2002)CrossRef
61.
go back to reference Z. Zhong, Surface finish of precision machined advanced materials. J. Mater. Process. Technol. 122, 173 (2002)CrossRef Z. Zhong, Surface finish of precision machined advanced materials. J. Mater. Process. Technol. 122, 173 (2002)CrossRef
62.
go back to reference M. Jiang, R. Komanduri, On the finishing of Si3N4 balls for bearing applications. Wear 215, 267 (1998)CrossRef M. Jiang, R. Komanduri, On the finishing of Si3N4 balls for bearing applications. Wear 215, 267 (1998)CrossRef
63.
go back to reference P. Vicente, D. David, J. Camassel, Raman scattering as a probing method of subsurface damage in SiC. Mater. Sci. Eng. B 80, 348 (2001)CrossRef P. Vicente, D. David, J. Camassel, Raman scattering as a probing method of subsurface damage in SiC. Mater. Sci. Eng. B 80, 348 (2001)CrossRef
64.
go back to reference M. Jiang, N.O. Wood, R. Komanduri, On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear 220, 59 (1998)CrossRef M. Jiang, N.O. Wood, R. Komanduri, On chemo-mechanical polishing (CMP) of silicon nitride (Si3N4) workmaterial with various abrasives. Wear 220, 59 (1998)CrossRef
Metadata
Title
SiC Single Crystal Growth and Substrate Processing
Authors
Xiangang Xu
Xiaobo Hu
Xiufang Chen
Copyright Year
2019
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-99211-2_2