Skip to main content
Top
Published in: Neural Computing and Applications 7/2019

02-11-2017 | Original Article

Simple speed estimators reproduce MT responses and identify strength of visual illusion

Authors: Daiki Nakamura, Shunji Satoh

Published in: Neural Computing and Applications | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational models of vision should not only be able to reproduce experimentally obtained results; such models should also be able to predict the input–output properties of vision. Conventional models of MT neurons are based on the concept of velocity filtering, as proposed by Simoncelli and Heeger (Vis Res 38(5):743–761, 1998). As this report describes, we provide another interpretation of the computational function of MT neurons. An MT neuron can be a simple speed estimator with an upper limitation for correct estimation. Subsequently, we assess whether the MT model can account for illusory perception of “rotating drift patterns,” by which humans perceive illusory rotation (clockwise or counterclockwise rotation) depending on the background luminance. Moreover, to predict whether a pattern causes visual illusion, or not, we generate an enormous set of possible visual patterns as inputs to the MT model: \(8^{8} = 16{,}777{,}216 \). Numerical quantities of model outputs obtained through a computer simulation for 88 inputs were used to estimate human illusory perception. Results of psychophysical experiments demonstrate that the model prediction is consistent with human perception.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154CrossRef Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154CrossRef
2.
go back to reference Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24(13):3313–3324CrossRef Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24(13):3313–3324CrossRef
3.
go back to reference Maunsell JH, van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147CrossRef Maunsell JH, van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147CrossRef
4.
go back to reference Scholl B, Burge J, Priebe NJ (2013) Binocular integration and disparity selectivity in mouse primary visual cortex. J Neurophysiol 109(12):3013–3024CrossRef Scholl B, Burge J, Priebe NJ (2013) Binocular integration and disparity selectivity in mouse primary visual cortex. J Neurophysiol 109(12):3013–3024CrossRef
5.
go back to reference Ziemba CM, Freeman J, Movshon JA, Simoncelli EP (2016) Selectivity and tolerance for visual texture in macaque V2. Proc Natl Acad Sci 113(22):E3140–E3149CrossRef Ziemba CM, Freeman J, Movshon JA, Simoncelli EP (2016) Selectivity and tolerance for visual texture in macaque V2. Proc Natl Acad Sci 113(22):E3140–E3149CrossRef
6.
go back to reference Komatsu H, Ideura Y, Kaji S, Yamane S (1992) Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neurosci 12(2):408–424CrossRef Komatsu H, Ideura Y, Kaji S, Yamane S (1992) Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neurosci 12(2):408–424CrossRef
7.
go back to reference Marčelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300MathSciNetCrossRef Marčelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300MathSciNetCrossRef
8.
go back to reference Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249(4972):1037–1041CrossRef Ohzawa I, DeAngelis GC, Freeman RD (1990) Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249(4972):1037–1041CrossRef
9.
go back to reference Simoncelli E, Heeger D (1998) A model of neuronal responses in visual area MT. Vis Res 38(5):743–761CrossRef Simoncelli E, Heeger D (1998) A model of neuronal responses in visual area MT. Vis Res 38(5):743–761CrossRef
10.
go back to reference Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp 121–130 Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging Understanding Workshop, pp 121–130
11.
go back to reference Fraser A, Wilcox KJ (1979) Perception of illusory movement. Nature 281(5732):565–566CrossRef Fraser A, Wilcox KJ (1979) Perception of illusory movement. Nature 281(5732):565–566CrossRef
12.
go back to reference Hsieh PJ, Caplovitz GP, Tse PU (2006) Illusory motion induced by the offset of stationary luminance-defined gradients. Vis Res 46:970–978CrossRef Hsieh PJ, Caplovitz GP, Tse PU (2006) Illusory motion induced by the offset of stationary luminance-defined gradients. Vis Res 46:970–978CrossRef
13.
go back to reference Hayashi Y, Ishii S, Urakubo H (2014) A Computational model of afterimage rotation in the peripheral drift illusion based on retinal ON/OFF responses. PLoS ONE 9(12):e115464CrossRef Hayashi Y, Ishii S, Urakubo H (2014) A Computational model of afterimage rotation in the peripheral drift illusion based on retinal ON/OFF responses. PLoS ONE 9(12):e115464CrossRef
14.
go back to reference Lindeberg T (1998) A scale selection principle for estimating image deformations. Image Vis Comput 16(14):961–977CrossRef Lindeberg T (1998) A scale selection principle for estimating image deformations. Image Vis Comput 16(14):961–977CrossRef
15.
go back to reference Young RA, Lesporance RM, Meyer WW (2001) The Gaussian derivative model for spatial-temporal vision: I. Cortical model. Spat Vis 14:261–319CrossRef Young RA, Lesporance RM, Meyer WW (2001) The Gaussian derivative model for spatial-temporal vision: I. Cortical model. Spat Vis 14:261–319CrossRef
18.
go back to reference Carandini M, Heeger D (2011) Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51–62CrossRef Carandini M, Heeger D (2011) Normalization as a canonical neural computation. Nat Rev Neurosci 13(1):51–62CrossRef
19.
go back to reference Boyraz P, Treue S (2011) Misperceptions of speed are accounted for by the responses of neurons in macaque cortical area MT. J Neurophysiol 105(3):1199–1211CrossRef Boyraz P, Treue S (2011) Misperceptions of speed are accounted for by the responses of neurons in macaque cortical area MT. J Neurophysiol 105(3):1199–1211CrossRef
20.
go back to reference Krekelberg B, van Wezel RJA, Albright TD (2006) Interactions between speed and contrast tuning in the middle temporal area: implications for the neural code for speed. J Neurosci 26(35):8988–8998CrossRef Krekelberg B, van Wezel RJA, Albright TD (2006) Interactions between speed and contrast tuning in the middle temporal area: implications for the neural code for speed. J Neurosci 26(35):8988–8998CrossRef
21.
go back to reference Priebe NJ, Cassanello CR, Lisberger SG (2003) The Neural representation of speed in macaque area MT/V5. J Neurosci 23(13):5650–5661CrossRef Priebe NJ, Cassanello CR, Lisberger SG (2003) The Neural representation of speed in macaque area MT/V5. J Neurosci 23(13):5650–5661CrossRef
22.
go back to reference Hunter JN, Born RT (2011) Stimulus-dependent modulation of suppressive influences in MT. J Neurosci 31(2):678–686CrossRef Hunter JN, Born RT (2011) Stimulus-dependent modulation of suppressive influences in MT. J Neurosci 31(2):678–686CrossRef
23.
go back to reference Bouguet J (2000) Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation, Microprocessor Research Labs, Santa Clara Bouguet J (2000) Pyramidal implementation of the Lucas Kanade feature tracker. Intel Corporation, Microprocessor Research Labs, Santa Clara
Metadata
Title
Simple speed estimators reproduce MT responses and identify strength of visual illusion
Authors
Daiki Nakamura
Shunji Satoh
Publication date
02-11-2017
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-017-3211-5

Other articles of this Issue 7/2019

Neural Computing and Applications 7/2019 Go to the issue

Premium Partner