Skip to main content
Top
Published in: Journal of Iron and Steel Research International 3/2023

08-03-2023 | Original Paper

Simulating molten pool features of shipbuilding steel subjected to submerged arc welding

Authors: Ming Zhong, Lei Jiang, Hang-yu Bai, Somnath Basu, Zhan-jun Wang, Cong Wang

Published in: Journal of Iron and Steel Research International | Issue 3/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel. One case only involved the surface tension model, and another one involved both the surface tension model and the interface tension model. The role of interface tension during welding is revealed, and the evolution of molten pool morphology is understood by comparing the surface temperature distribution, surface tension and interface tension distribution, and the streamline of the molten pool for the two cases. When the interface tension model is disregarded, a flow conducive to the outward expansion is formed in the surface area of the molten pool, resulting in a small weld depth-to-width ratio. After applying the interface tension model, the expanding outward flow is restrained, which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces. The simulation results involving the interface tension model have been verified with satisfactory predictability.
Literature
[1]
go back to reference D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, J. Mater. Process. Technol. 213 (2013) 2278–2291.CrossRef D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, J. Mater. Process. Technol. 213 (2013) 2278–2291.CrossRef
[2]
go back to reference D.W. Cho, D.V. Kiran, S.J. Na, Int. J. Heat Mass Transf. 110 (2017) 104–112.CrossRef D.W. Cho, D.V. Kiran, S.J. Na, Int. J. Heat Mass Transf. 110 (2017) 104–112.CrossRef
[3]
go back to reference C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140. C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140.
[4]
go back to reference Z. Wang, J. Zhang, M. Zhong, C. Wang, Metall. Mater. Trans. B 53 (2022) 1364–1370.CrossRef Z. Wang, J. Zhang, M. Zhong, C. Wang, Metall. Mater. Trans. B 53 (2022) 1364–1370.CrossRef
[7]
go back to reference R. Sudhakaran, V. VeL Murugan, P.S. Sivasakthivel, M. Balaji, Int. J. Adv. Manuf. Technol. 64 (2013) 1487–1504.CrossRef R. Sudhakaran, V. VeL Murugan, P.S. Sivasakthivel, M. Balaji, Int. J. Adv. Manuf. Technol. 64 (2013) 1487–1504.CrossRef
[9]
go back to reference C. Wang, M. Jiang, C. Wang, H. Liu, D. Zhao, Z. Chen, J. Adv. Joining Process. 1 (2020) 100021.CrossRef C. Wang, M. Jiang, C. Wang, H. Liu, D. Zhao, Z. Chen, J. Adv. Joining Process. 1 (2020) 100021.CrossRef
[10]
go back to reference D.V. Kiran, B. Basu, A.K. Shah, S. Mishra, A. De, ISIJ Int. 51 (2011) 793–798.CrossRef D.V. Kiran, B. Basu, A.K. Shah, S. Mishra, A. De, ISIJ Int. 51 (2011) 793–798.CrossRef
[11]
go back to reference A. Ghosh, H. Chattopadhyay, Int. J. Adv. Manuf. Technol. 69 (2013) 2691–2701.CrossRef A. Ghosh, H. Chattopadhyay, Int. J. Adv. Manuf. Technol. 69 (2013) 2691–2701.CrossRef
[12]
[13]
go back to reference D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, J. Mater. Process. Technol. 214 (2014) 2233–2247.CrossRef D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, J. Mater. Process. Technol. 214 (2014) 2233–2247.CrossRef
[14]
go back to reference H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf. 44 (2001) 417–428.CrossRef H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf. 44 (2001) 417–428.CrossRef
[15]
[17]
go back to reference L. Wang, C. Wu, J. Chen, J. Gao, Int. J. Heat Mass Transf. 116 (2018) 1282–1291.CrossRef L. Wang, C. Wu, J. Chen, J. Gao, Int. J. Heat Mass Transf. 116 (2018) 1282–1291.CrossRef
[18]
go back to reference G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, Int. J. Heat Mass Transf. 138 (2019) 879–888.CrossRef G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, Int. J. Heat Mass Transf. 138 (2019) 879–888.CrossRef
[19]
[20]
go back to reference M. Shoichi, M. Yukio, T. Koki, T. Yasushi, M. Yukinori, M. Yusuke, Sci. Technol. Weld. Joining 18 (2013) 38–44.CrossRef M. Shoichi, M. Yukio, T. Koki, T. Yasushi, M. Yukinori, M. Yusuke, Sci. Technol. Weld. Joining 18 (2013) 38–44.CrossRef
[21]
go back to reference L. Wang, J. Chen, C. Wu, J. Gao, J. Mater. Process. Technol. 237 (2016) 342–350.CrossRef L. Wang, J. Chen, C. Wu, J. Gao, J. Mater. Process. Technol. 237 (2016) 342–350.CrossRef
[23]
go back to reference V.G. Levich, V.S. Krylov, Annual Review of Fluid Mechanics 1 (1969) 293–316.CrossRef V.G. Levich, V.S. Krylov, Annual Review of Fluid Mechanics 1 (1969) 293–316.CrossRef
[24]
go back to reference D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, J. Mater. Process. Technol. 213 (2013) 1640–1652.CrossRef D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, J. Mater. Process. Technol. 213 (2013) 1640–1652.CrossRef
[25]
go back to reference D.V. Kiran, D.W. Cho, W.H. Song, S.J. Na, Int. J. Heat Mass Transf. 87 (2015) 327–340.CrossRef D.V. Kiran, D.W. Cho, W.H. Song, S.J. Na, Int. J. Heat Mass Transf. 87 (2015) 327–340.CrossRef
[26]
[27]
go back to reference Y. Ogino, S. Fukumoto, S. Asai, T. Tsuyama, Weld. World 64 (2020) 1897–1904.CrossRef Y. Ogino, S. Fukumoto, S. Asai, T. Tsuyama, Weld. World 64 (2020) 1897–1904.CrossRef
[28]
[29]
[31]
go back to reference S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 32 (2011) 869–876.CrossRef S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 32 (2011) 869–876.CrossRef
[34]
go back to reference X. Meng, G. Qin, X. Bai, Z. Zou, J. Mater. Process. Technol. 236 (2016) 225–234.CrossRef X. Meng, G. Qin, X. Bai, Z. Zou, J. Mater. Process. Technol. 236 (2016) 225–234.CrossRef
[36]
[37]
[39]
[40]
[42]
go back to reference H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud, Can. Metall. Quart. 23 (1984) 179–191.CrossRef H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud, Can. Metall. Quart. 23 (1984) 179–191.CrossRef
[43]
go back to reference S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2002.CrossRef S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2002.CrossRef
Metadata
Title
Simulating molten pool features of shipbuilding steel subjected to submerged arc welding
Authors
Ming Zhong
Lei Jiang
Hang-yu Bai
Somnath Basu
Zhan-jun Wang
Cong Wang
Publication date
08-03-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 3/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00908-y

Other articles of this Issue 3/2023

Journal of Iron and Steel Research International 3/2023 Go to the issue

Premium Partners