Skip to main content
Erschienen in: Journal of Iron and Steel Research International 3/2023

08.03.2023 | Original Paper

Simulating molten pool features of shipbuilding steel subjected to submerged arc welding

verfasst von: Ming Zhong, Lei Jiang, Hang-yu Bai, Somnath Basu, Zhan-jun Wang, Cong Wang

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel. One case only involved the surface tension model, and another one involved both the surface tension model and the interface tension model. The role of interface tension during welding is revealed, and the evolution of molten pool morphology is understood by comparing the surface temperature distribution, surface tension and interface tension distribution, and the streamline of the molten pool for the two cases. When the interface tension model is disregarded, a flow conducive to the outward expansion is formed in the surface area of the molten pool, resulting in a small weld depth-to-width ratio. After applying the interface tension model, the expanding outward flow is restrained, which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces. The simulation results involving the interface tension model have been verified with satisfactory predictability.
Literatur
[1]
Zurück zum Zitat D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, J. Mater. Process. Technol. 213 (2013) 2278–2291.CrossRef D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, J. Mater. Process. Technol. 213 (2013) 2278–2291.CrossRef
[2]
Zurück zum Zitat D.W. Cho, D.V. Kiran, S.J. Na, Int. J. Heat Mass Transf. 110 (2017) 104–112.CrossRef D.W. Cho, D.V. Kiran, S.J. Na, Int. J. Heat Mass Transf. 110 (2017) 104–112.CrossRef
[3]
Zurück zum Zitat C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140. C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140.
[4]
Zurück zum Zitat Z. Wang, J. Zhang, M. Zhong, C. Wang, Metall. Mater. Trans. B 53 (2022) 1364–1370.CrossRef Z. Wang, J. Zhang, M. Zhong, C. Wang, Metall. Mater. Trans. B 53 (2022) 1364–1370.CrossRef
[6]
[7]
Zurück zum Zitat R. Sudhakaran, V. VeL Murugan, P.S. Sivasakthivel, M. Balaji, Int. J. Adv. Manuf. Technol. 64 (2013) 1487–1504.CrossRef R. Sudhakaran, V. VeL Murugan, P.S. Sivasakthivel, M. Balaji, Int. J. Adv. Manuf. Technol. 64 (2013) 1487–1504.CrossRef
[9]
Zurück zum Zitat C. Wang, M. Jiang, C. Wang, H. Liu, D. Zhao, Z. Chen, J. Adv. Joining Process. 1 (2020) 100021.CrossRef C. Wang, M. Jiang, C. Wang, H. Liu, D. Zhao, Z. Chen, J. Adv. Joining Process. 1 (2020) 100021.CrossRef
[10]
Zurück zum Zitat D.V. Kiran, B. Basu, A.K. Shah, S. Mishra, A. De, ISIJ Int. 51 (2011) 793–798.CrossRef D.V. Kiran, B. Basu, A.K. Shah, S. Mishra, A. De, ISIJ Int. 51 (2011) 793–798.CrossRef
[11]
Zurück zum Zitat A. Ghosh, H. Chattopadhyay, Int. J. Adv. Manuf. Technol. 69 (2013) 2691–2701.CrossRef A. Ghosh, H. Chattopadhyay, Int. J. Adv. Manuf. Technol. 69 (2013) 2691–2701.CrossRef
[12]
Zurück zum Zitat W.H. Kim, H.G. Fan, S.J. Na, Numer. Heat Transf. A 32 (1997) 633–652.CrossRef W.H. Kim, H.G. Fan, S.J. Na, Numer. Heat Transf. A 32 (1997) 633–652.CrossRef
[13]
Zurück zum Zitat D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, J. Mater. Process. Technol. 214 (2014) 2233–2247.CrossRef D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, J. Mater. Process. Technol. 214 (2014) 2233–2247.CrossRef
[14]
Zurück zum Zitat H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf. 44 (2001) 417–428.CrossRef H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf. 44 (2001) 417–428.CrossRef
[15]
Zurück zum Zitat Y. Li, Y. Feng, X. Zhang, C. Wu, Int. J. Therm. Sci. 64 (2013) 93–104.CrossRef Y. Li, Y. Feng, X. Zhang, C. Wu, Int. J. Therm. Sci. 64 (2013) 93–104.CrossRef
[17]
Zurück zum Zitat L. Wang, C. Wu, J. Chen, J. Gao, Int. J. Heat Mass Transf. 116 (2018) 1282–1291.CrossRef L. Wang, C. Wu, J. Chen, J. Gao, Int. J. Heat Mass Transf. 116 (2018) 1282–1291.CrossRef
[18]
Zurück zum Zitat G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, Int. J. Heat Mass Transf. 138 (2019) 879–888.CrossRef G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, Int. J. Heat Mass Transf. 138 (2019) 879–888.CrossRef
[19]
[20]
Zurück zum Zitat M. Shoichi, M. Yukio, T. Koki, T. Yasushi, M. Yukinori, M. Yusuke, Sci. Technol. Weld. Joining 18 (2013) 38–44.CrossRef M. Shoichi, M. Yukio, T. Koki, T. Yasushi, M. Yukinori, M. Yusuke, Sci. Technol. Weld. Joining 18 (2013) 38–44.CrossRef
[21]
Zurück zum Zitat L. Wang, J. Chen, C. Wu, J. Gao, J. Mater. Process. Technol. 237 (2016) 342–350.CrossRef L. Wang, J. Chen, C. Wu, J. Gao, J. Mater. Process. Technol. 237 (2016) 342–350.CrossRef
[22]
[23]
Zurück zum Zitat V.G. Levich, V.S. Krylov, Annual Review of Fluid Mechanics 1 (1969) 293–316.CrossRef V.G. Levich, V.S. Krylov, Annual Review of Fluid Mechanics 1 (1969) 293–316.CrossRef
[24]
Zurück zum Zitat D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, J. Mater. Process. Technol. 213 (2013) 1640–1652.CrossRef D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, J. Mater. Process. Technol. 213 (2013) 1640–1652.CrossRef
[25]
Zurück zum Zitat D.V. Kiran, D.W. Cho, W.H. Song, S.J. Na, Int. J. Heat Mass Transf. 87 (2015) 327–340.CrossRef D.V. Kiran, D.W. Cho, W.H. Song, S.J. Na, Int. J. Heat Mass Transf. 87 (2015) 327–340.CrossRef
[26]
Zurück zum Zitat B. Zhao, J. Chen, C. Jia, C. Wu, J. Manuf. Process. 32 (2018) 538–552.CrossRef B. Zhao, J. Chen, C. Jia, C. Wu, J. Manuf. Process. 32 (2018) 538–552.CrossRef
[27]
Zurück zum Zitat Y. Ogino, S. Fukumoto, S. Asai, T. Tsuyama, Weld. World 64 (2020) 1897–1904.CrossRef Y. Ogino, S. Fukumoto, S. Asai, T. Tsuyama, Weld. World 64 (2020) 1897–1904.CrossRef
[28]
[29]
Zurück zum Zitat B. Zhao, J. Chen, C. Wu, L. Shi, J. Manuf. Process. 59 (2020) 167–185.CrossRef B. Zhao, J. Chen, C. Wu, L. Shi, J. Manuf. Process. 59 (2020) 167–185.CrossRef
[30]
[31]
Zurück zum Zitat S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 32 (2011) 869–876.CrossRef S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 32 (2011) 869–876.CrossRef
[32]
[33]
[34]
Zurück zum Zitat X. Meng, G. Qin, X. Bai, Z. Zou, J. Mater. Process. Technol. 236 (2016) 225–234.CrossRef X. Meng, G. Qin, X. Bai, Z. Zou, J. Mater. Process. Technol. 236 (2016) 225–234.CrossRef
[35]
[36]
[37]
[38]
[39]
Zurück zum Zitat P. Sahoo, T. Debroy, M.J. McNallan, Metall. Trans. B 19 (1988) 483–491.CrossRef P. Sahoo, T. Debroy, M.J. McNallan, Metall. Trans. B 19 (1988) 483–491.CrossRef
[40]
[41]
[42]
Zurück zum Zitat H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud, Can. Metall. Quart. 23 (1984) 179–191.CrossRef H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud, Can. Metall. Quart. 23 (1984) 179–191.CrossRef
[43]
Zurück zum Zitat S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2002.CrossRef S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2002.CrossRef
Metadaten
Titel
Simulating molten pool features of shipbuilding steel subjected to submerged arc welding
verfasst von
Ming Zhong
Lei Jiang
Hang-yu Bai
Somnath Basu
Zhan-jun Wang
Cong Wang
Publikationsdatum
08.03.2023
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 3/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00908-y

Weitere Artikel der Ausgabe 3/2023

Journal of Iron and Steel Research International 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.