Skip to main content
Erschienen in: Journal of Iron and Steel Research International 3/2023

03.12.2022 | Original Paper

Effect of annealing time on microstructure and mechanical properties of cryorolled AISI 310S stainless steel

verfasst von: Xue-kui Lian, Yong Li, Yi Xiong, Yong-li Wu, Shun Han, Tian-tian He, Chun-xu Wang, Feng-zhang Ren

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

AISI 310S stable austenitic stainless steel was subjected to 90% cryorolling and then annealed at 800 °C for 2–60 min. The effect of annealing time on the microstructure and mechanical properties was studied by optical microscopy, scanning electron microscopy, transmission electron microscopy, microhardness and tensile test. The results show that the grain size of AISI 310S stainless steel is refined to the nanometer level after 90% cryorolling, and the grain size is approximately 20 nm. With the increase in annealing time, the degree of grain recrystallization occurs more fully and completely, as the grain begins to grow and then tends to stabilize. The strength and hardness of the annealed specimens decrease with increasing annealing time, while elongation tends to increase. When the annealing time is 10 min, the yield strength increases by about 2 times compared to that of the original austenite (unrolled), and the elongation is also above 20%, which is the best preparation process for ultra-fine grain austenitic stainless steel under this experimental condition. As the annealing time treatment increases, the fracture morphology changes from mixed quasi-cleavage and ductile fracture (after cryorolling) to ductile fracture (after annealing).
Literatur
[1]
Zurück zum Zitat R. Singh, S.D. Yadav, B.K. Sahoo, S.G. Chowdhury, A. Kumar, Def. Sci. J. 71 (2021) 383–389.CrossRef R. Singh, S.D. Yadav, B.K. Sahoo, S.G. Chowdhury, A. Kumar, Def. Sci. J. 71 (2021) 383–389.CrossRef
[2]
Zurück zum Zitat S. Chattopadhyay, G. Anand, S.G. Chowdhury, I. Manna, Mater. Sci. Eng. A 734 (2018) 139–148.CrossRef S. Chattopadhyay, G. Anand, S.G. Chowdhury, I. Manna, Mater. Sci. Eng. A 734 (2018) 139–148.CrossRef
[3]
Zurück zum Zitat Y.Z. Zhang, J.J. Wang, N.R. Tao, J. Mater. Sci. Technol. 36 (2020) 65–69.CrossRef Y.Z. Zhang, J.J. Wang, N.R. Tao, J. Mater. Sci. Technol. 36 (2020) 65–69.CrossRef
[4]
Zurück zum Zitat Z.J. Zheng, Y. Gao, J.W. Liu, M. Zhu, Mater. Sci. Eng. A 639 (2015) 615–625.CrossRef Z.J. Zheng, Y. Gao, J.W. Liu, M. Zhu, Mater. Sci. Eng. A 639 (2015) 615–625.CrossRef
[5]
Zurück zum Zitat B.R. Kumar, B. Mahato, S. Sharma, J.K. Sahu, Metall. Mater. Trans. A 40 (2009) 3226–3224.CrossRef B.R. Kumar, B. Mahato, S. Sharma, J.K. Sahu, Metall. Mater. Trans. A 40 (2009) 3226–3224.CrossRef
[6]
Zurück zum Zitat M. Wang, H.Z. Guo, Hot Working Technology 37 (2008) No. 20, 24–26+30. M. Wang, H.Z. Guo, Hot Working Technology 37 (2008) No. 20, 24–26+30.
[7]
Zurück zum Zitat Y. Xiong, J.B. Wang, L.F. Chen, Y. Lu, F.Z. Ren, L.F. Zhang, J.L. Ma, Trans. Mater. Heat Treat. 37 (2016) No. 4, 101–107. Y. Xiong, J.B. Wang, L.F. Chen, Y. Lu, F.Z. Ren, L.F. Zhang, J.L. Ma, Trans. Mater. Heat Treat. 37 (2016) No. 4, 101–107.
[9]
Zurück zum Zitat A. Shokohfar, S.M. Abbasi, A. Yazdani, B. Rabiee, Defect Diffus. Forum 312–315 (2011) 51–55. A. Shokohfar, S.M. Abbasi, A. Yazdani, B. Rabiee, Defect Diffus. Forum 312–315 (2011) 51–55.
[10]
[11]
Zurück zum Zitat H.A. Rezai, M. Shaban Ghazani, B. Eghbali, Mater. Sci. Eng. A 736 (2018) 364–374.CrossRef H.A. Rezai, M. Shaban Ghazani, B. Eghbali, Mater. Sci. Eng. A 736 (2018) 364–374.CrossRef
[13]
Zurück zum Zitat A. Amininejad, R. Jamaati, S.J. Hosseinipour, Trans. Ind. Inst. Metals 74 (2021) 1799–1807.CrossRef A. Amininejad, R. Jamaati, S.J. Hosseinipour, Trans. Ind. Inst. Metals 74 (2021) 1799–1807.CrossRef
[14]
Zurück zum Zitat J.X. Zhang, Y.M. He, Y.H. Wang, Y.F. Wang, T.S. Wang, Materialia 8 (2019) 10045. J.X. Zhang, Y.M. He, Y.H. Wang, Y.F. Wang, T.S. Wang, Materialia 8 (2019) 10045.
[15]
[16]
Zurück zum Zitat J.T. Shi, L.G. Hou, J.R. Zuo, L.Z. Zhuang, J.S. Zhang, Int. J. Miner. Metall. Mater. 24 (2017) 638–645.CrossRef J.T. Shi, L.G. Hou, J.R. Zuo, L.Z. Zhuang, J.S. Zhang, Int. J. Miner. Metall. Mater. 24 (2017) 638–645.CrossRef
[17]
Zurück zum Zitat Y. Xiong, T.T. He, H.P. Li, Y. Lu, F.Z. Ren, A.A Volinsky, Mater. Sci. Eng. A 703 (2017) 68–75.CrossRef Y. Xiong, T.T. He, H.P. Li, Y. Lu, F.Z. Ren, A.A Volinsky, Mater. Sci. Eng. A 703 (2017) 68–75.CrossRef
[18]
Zurück zum Zitat T. Zhou, Y. Xiong, Y. Yue, Y. Lu, Y.N. Chen, T.T. He, F.Z. Ren, H. Singh, J. Kömi, M. Huttula, W. Cao, Mater. Sci. Eng. A 766 (2019) 138352.CrossRef T. Zhou, Y. Xiong, Y. Yue, Y. Lu, Y.N. Chen, T.T. He, F.Z. Ren, H. Singh, J. Kömi, M. Huttula, W. Cao, Mater. Sci. Eng. A 766 (2019) 138352.CrossRef
[19]
Zurück zum Zitat Z.D. Li, Y.Z. Wu, Z.B. Xie, C. Kong, H. Yu, Materials 14 (2021) 4025.CrossRef Z.D. Li, Y.Z. Wu, Z.B. Xie, C. Kong, H. Yu, Materials 14 (2021) 4025.CrossRef
[20]
Zurück zum Zitat A. Dhal, S.K. Panigrahi, M.S. Shunmugam, J. Alloy. Compd. 726 (2017) 1205–1219.CrossRef A. Dhal, S.K. Panigrahi, M.S. Shunmugam, J. Alloy. Compd. 726 (2017) 1205–1219.CrossRef
[21]
Zurück zum Zitat H.C. Ding, Y.J. Zhao, Y.M. Su, X. Wang, Q.H. Nan, C. Chou, Y.J. Feng, Heat Treat. of Met. 46 (2021) No. 6, 70–76. H.C. Ding, Y.J. Zhao, Y.M. Su, X. Wang, Q.H. Nan, C. Chou, Y.J. Feng, Heat Treat. of Met. 46 (2021) No. 6, 70–76.
[23]
Zurück zum Zitat D. Liu, D.X. Liu, X.H. Zhang, C.S. Liu, N. Ao, Mater. Sci. Eng. A. 726 (2018) 69–81.CrossRef D. Liu, D.X. Liu, X.H. Zhang, C.S. Liu, N. Ao, Mater. Sci. Eng. A. 726 (2018) 69–81.CrossRef
[24]
Zurück zum Zitat Z.X. Huang, C.S. Wu, Electroplating theory, China Agricultural Machinery Press, Beijing, China, 1982. Z.X. Huang, C.S. Wu, Electroplating theory, China Agricultural Machinery Press, Beijing, China, 1982.
[25]
Zurück zum Zitat Y. Xiong, T.T. He, J.B. Wang, Y. Lu, L.Y. Chen, F.Z. Ren, Y.L. Liu, A.A. Volinsky, Mater. Des. 88 (2015) 398–405.CrossRef Y. Xiong, T.T. He, J.B. Wang, Y. Lu, L.Y. Chen, F.Z. Ren, Y.L. Liu, A.A. Volinsky, Mater. Des. 88 (2015) 398–405.CrossRef
Metadaten
Titel
Effect of annealing time on microstructure and mechanical properties of cryorolled AISI 310S stainless steel
verfasst von
Xue-kui Lian
Yong Li
Yi Xiong
Yong-li Wu
Shun Han
Tian-tian He
Chun-xu Wang
Feng-zhang Ren
Publikationsdatum
03.12.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 3/2023
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-022-00870-9

Weitere Artikel der Ausgabe 3/2023

Journal of Iron and Steel Research International 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.