Skip to main content
Top
Published in: Thermal Engineering 11/2022

01-11-2022 | NUCLEAR POWER PLANTS

Simulating the Thermal Interaction between Fuel and Sodium Coolant Using the EUCLID/V2 Integrated Code

Authors: E. V. Usov, V. I. Chukhno, I. A. Klimonov, A. A. Butov, N. A. Mosunova, V. F. Strizhov

Published in: Thermal Engineering | Issue 11/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

This article addresses the development of approaches to numerically analyzing the processes of interaction between liquid metal sodium coolant and destructed fuel-pin components (fuel and steel in solid and liquid states). Such processes may occur during a severe accident involving core destruction, and also when fuel-pin components (fuel or cladding) heated to a high temperature release into the flow of relatively cold liquid coolant or when the molten fuel begins to melt the corium catcher. A dramatic growth of power caused by self motion of pins and stoppage of forced coolant circulation without actuation of the reactor plant’s active and passive safety systems are among possible events leading to accidents with such consequences. For simulating the thermal interaction, it is proposed to use a multicomponent thermally nonequilibrium model based on the solution of a system of mass, energy, and momentum conservation equations with the relevant relationships that take into account the specific features of thermal and mechanical interaction between the melt and coolant. Simulation of the processes is very important for determining pressure jumps in the reactor plant caused by release of destructed fuel-pin components into the coolant flow. Thermal interaction of fuel-pin components with the coolant may cause intense coolant evaporation and, as a consequence, the occurrence of drastic pressure jumps determined by the intensity of heat transfer from components to coolant and the amount of vapor produced. To find the rate of heat transfer between various components, a chart of heat-transfer modes and closing relationships corresponding to each mode are used.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference L. V. Deitrich, “Experiments on transient fuel failure mechanisms — Selected ANL programs,” in Proc. Int. Working Group on Fast Reactors Specialists’ Meeting on Fuel Failure Mechanisms, Seattle, Wash., 11–16 May, 1975 (Argonne National Laboratory, Argonne, Ill., 1975). L. V. Deitrich, “Experiments on transient fuel failure mechanisms — Selected ANL programs,” in Proc. Int. Working Group on Fast Reactors Specialists’ Meeting on Fuel Failure Mechanisms, Seattle, Wash., 11–16 May, 1975 (Argonne National Laboratory, Argonne, Ill., 1975).
2.
go back to reference G. P. DeVault, SIMMER-II Analysis of the CAMEL II C6 and C7 Experiments (Simulated Fuel Penetration into a Primary Control Assembly), Los Alamos National Laboratory Report (Los Alamos National Laboratory, Los Alamos, N.M., 1985). G. P. DeVault, SIMMER-II Analysis of the CAMEL II C6 and C7 Experiments (Simulated Fuel Penetration into a Primary Control Assembly), Los Alamos National Laboratory Report (Los Alamos National Laboratory, Los Alamos, N.M., 1985).
4.
go back to reference D. Magallon, H. Hohmann, and H. Schins, “Pouring of 100-kg-scale molten UO2 into sodium,” Nucl. Technol. 98, 79–90 (1992).CrossRef D. Magallon, H. Hohmann, and H. Schins, “Pouring of 100-kg-scale molten UO2 into sodium,” Nucl. Technol. 98, 79–90 (1992).CrossRef
5.
go back to reference Yu. I. Zagorul’ko, V. G. Zhmurin, A. N. Volok, and Yu. P. Kovalev, “Experimental investigations of thermal interaction between corium and coolants,” Therm. Eng. 55, 235–244 (2008). Yu. I. Zagorul’ko, V. G. Zhmurin, A. N. Volok, and Yu. P. Kovalev, “Experimental investigations of thermal interaction between corium and coolants,” Therm. Eng. 55, 235–244 (2008).
6.
go back to reference A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, P. D. Lobanov, N. A. Mosunova, A. A. Sorokin, V. F. Strizhov, E. V. Usov, and V. I. Chukhno, “Verification of the EUCLID/V2 code based on experiments involving destruction of a liquid metal cooled reactor’s core components,” Therm. Eng. 66, 302–309 (2019). https://doi.org/10.1134/S0040601519050033CrossRef A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, P. D. Lobanov, N. A. Mosunova, A. A. Sorokin, V. F. Strizhov, E. V. Usov, and V. I. Chukhno, “Verification of the EUCLID/V2 code based on experiments involving destruction of a liquid metal cooled reactor’s core components,” Therm. Eng. 66, 302–309 (2019). https://​doi.​org/​10.​1134/​S004060151905003​3CrossRef
7.
go back to reference A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, N. A. Mosunova, V. F. Strizhov, A. A. Sorokin, S. A. Frolov, E. V. Usov, and V. I. Chukhno, “The EUCLID/V2 code physical models for calculating fuel rod and core failures in a liquid metal cooled reactor,” Therm. Eng. 66, 293–301 (2019). https://doi.org/10.1134/S0040601519050021CrossRef A. A. Butov, V. S. Zhdanov, I. A. Klimonov, I. G. Kudashov, A. E. Kutlimetov, N. A. Mosunova, V. F. Strizhov, A. A. Sorokin, S. A. Frolov, E. V. Usov, and V. I. Chukhno, “The EUCLID/V2 code physical models for calculating fuel rod and core failures in a liquid metal cooled reactor,” Therm. Eng. 66, 293–301 (2019). https://​doi.​org/​10.​1134/​S004060151905002​1CrossRef
8.
go back to reference E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “Fuel pin melting in a fast reactor and melt solidification: Simulation using the SAFR/V1 module of the EVKLID/V2 integral code,” At. Energy 124, 147–153 (2018).CrossRef E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “Fuel pin melting in a fast reactor and melt solidification: Simulation using the SAFR/V1 module of the EVKLID/V2 integral code,” At. Energy 124, 147–153 (2018).CrossRef
9.
go back to reference E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “SAFR/V1 (EVKLID/V2 integral code module) aided simulation of melt movement along the surface of a fuel element in a fast reactor during a serious accident,” At. Energy 124, 232–237 (2018).CrossRef E. V. Usov, A. A. Butov, V. I. Chukhno, I. A. Klimonov, I. G. Kudashov, V. S. Zhdanov, N. A. Pribaturin, N. A. Mosunova, and V. F. Strizhov, “SAFR/V1 (EVKLID/V2 integral code module) aided simulation of melt movement along the surface of a fuel element in a fast reactor during a serious accident,” At. Energy 124, 232–237 (2018).CrossRef
10.
go back to reference V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). https://doi.org/10.1134/S0040601516020014CrossRef V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). https://​doi.​org/​10.​1134/​S004060151602001​4CrossRef
11.
go back to reference E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). https://doi.org/10.1134/S0040601517070102CrossRef E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). https://​doi.​org/​10.​1134/​S004060151707010​2CrossRef
12.
go back to reference R. Schins, D. Magallon, S. Giuliani, and F. S. Gunnerson, “Pouring of molten UO2, UC and Al2O3 in sodium: Interactions and debris; theoretical analysis,” Eur. Appl. Res. Rep. 7, 577–672 (1986). R. Schins, D. Magallon, S. Giuliani, and F. S. Gunnerson, “Pouring of molten UO2, UC and Al2O3 in sodium: Interactions and debris; theoretical analysis,” Eur. Appl. Res. Rep. 7, 577–672 (1986).
13.
go back to reference F. Kreith and W. Z. Black, Basic Heat Transfer (Harper and Row, New York, 1980; Mir, Moscow, 1983). F. Kreith and W. Z. Black, Basic Heat Transfer (Harper and Row, New York, 1980; Mir, Moscow, 1983).
14.
go back to reference H. M. Kotowski and C. Savatteri, “Fundamentals of liquid metal boiling thermohydraulics,” Nucl. Eng. Des. 82, 281–304 (1984).CrossRef H. M. Kotowski and C. Savatteri, “Fundamentals of liquid metal boiling thermohydraulics,” Nucl. Eng. Des. 82, 281–304 (1984).CrossRef
15.
go back to reference M. Farahat and D. Eggen, “Pool boiling in subcooled sodium at atmospheric pressure,” Nucl. Eng. Des. 53, 240–253 (1974).CrossRef M. Farahat and D. Eggen, “Pool boiling in subcooled sodium at atmospheric pressure,” Nucl. Eng. Des. 53, 240–253 (1974).CrossRef
Metadata
Title
Simulating the Thermal Interaction between Fuel and Sodium Coolant Using the EUCLID/V2 Integrated Code
Authors
E. V. Usov
V. I. Chukhno
I. A. Klimonov
A. A. Butov
N. A. Mosunova
V. F. Strizhov
Publication date
01-11-2022
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 11/2022
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S004060152211009X

Other articles of this Issue 11/2022

Thermal Engineering 11/2022 Go to the issue

STEAM BOILERS, POWER-PLANT FUELS, BURNER UNITS, AND BOILER AUXILIARY EQUIPMENT

A Pulverized Coal Fuel Electrical Ignition System and Its Application Experience

RENEWABLE ENERGY SOURCES, HYDROPOWER ENGINEERING

Integrated Aluminum-Water Technology for Hydrogen Production

Premium Partner