Skip to main content
Top
Published in: Journal of Electronic Materials 9/2022

21-06-2022 | Original Research Article

Simulation Analysis of High Field-Effect Mobility in p-Channel-Based Cylindrical Thin-Film Transistors

Authors: Viswanath G. Akkili, N. Prudhvi Raju, R. Thangavel, Viranjay M. Srivastava

Published in: Journal of Electronic Materials | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tin monoxide (SnO) has gained considerable attention in recent years because of its high hole mobility, transparency, and possibility for mass production. This study investigates the simulation of p-channel SnO thin-film transistors (TFTs) using cylindrical geometry using both a 3D numerical simulation approach and theoretical insights. To analyze the electrical performance of the devices, the gate metal work function varied from 4.4 eV to 5.0 eV. Among the simulated cylindrical TFTs (CTFTs), the 4.4 eV device shows maximum field-effect mobility of 45.39 cm2/V s and a threshold voltage (Vth) of 1.38 V. This is the highest value for p-channel TFTs. In addition, the simulated characteristics are compared with experimental characteristics by adjusting the defect parameter values. A simulation of the leakage current density and gate capacitance was also performed to estimate the dielectric layer quality. The results were determined to be 8.5 × 10-10 A/cm2 and 7.2 × 10-7 F/cm2 for 4.4 eV CTFTs, respectively. Theoretically, first-principles calculations have been performed within density functional theory (DFT) using Tran–Blaha modified Becke–Johnson (TB-mBJ) functionals. The electronic band structure calculations estimate the electronic band gap as 2.2 eV.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee, and S.Y. Choi, TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Adv. Mater. 32, 1 (2020).CrossRef G.W. Shim, W. Hong, J.H. Cha, J.H. Park, K.J. Lee, and S.Y. Choi, TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Adv. Mater. 32, 1 (2020).CrossRef
2.
go back to reference T. C. Chang, Y. C. Tsao, P. H. Chen, M. C. Tai, S. P. Huang, W. C. Su, and G. F. Chen, Flexible Low-Temperature Polycrystalline Silicon Thin-Film Transistors. Mater. Today Adv. 5, 0 (2020). T. C. Chang, Y. C. Tsao, P. H. Chen, M. C. Tai, S. P. Huang, W. C. Su, and G. F. Chen, Flexible Low-Temperature Polycrystalline Silicon Thin-Film Transistors. Mater. Today Adv. 5, 0 (2020).
3.
go back to reference L. Zhang, W. Xiao, W. Wu, and B. Liu, Research Progress on Flexible Oxide-Based Thin Film Transistors. Appl. Sci. 9, (2019). L. Zhang, W. Xiao, W. Wu, and B. Liu, Research Progress on Flexible Oxide-Based Thin Film Transistors. Appl. Sci. 9, (2019).
4.
go back to reference G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, Impact of Device Scaling on the Electrical Properties of MoS2 Field-Effect Transistors. Sci. Rep. 11, 1 (2021).CrossRef G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, Impact of Device Scaling on the Electrical Properties of MoS2 Field-Effect Transistors. Sci. Rep. 11, 1 (2021).CrossRef
5.
go back to reference N. Gowthaman and V.M. Srivastava, Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. J. Mater. Sci. 57, 8381 (2022).CrossRef N. Gowthaman and V.M. Srivastava, Mathematical modeling of electron density arrangement in CSDG MOSFET: A nano-material approach. J. Mater. Sci. 57, 8381 (2022).CrossRef
6.
go back to reference M. Alam, K. Kumar, and V. Dutta, Comparative Efficiency Analysis for Silicon, Silicon Carbide MOSFETs and IGBT Device for DC–DC Boost Converter. SN Appl. Sci. 1, 1 (2019).CrossRef M. Alam, K. Kumar, and V. Dutta, Comparative Efficiency Analysis for Silicon, Silicon Carbide MOSFETs and IGBT Device for DC–DC Boost Converter. SN Appl. Sci. 1, 1 (2019).CrossRef
7.
go back to reference S.K. Dargar and V.M. Srivastava, Design of Double-Gate Tri-Active Layer Channel Based IGZO Thin-Film Transistor for Improved Performance of Ultra-Low-Power RFID Rectifier. IEEE Access 8, 194652 (2020).CrossRef S.K. Dargar and V.M. Srivastava, Design of Double-Gate Tri-Active Layer Channel Based IGZO Thin-Film Transistor for Improved Performance of Ultra-Low-Power RFID Rectifier. IEEE Access 8, 194652 (2020).CrossRef
8.
go back to reference T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, T. Inokuma, and N. Tokuda, Inversion Channel Mobility and Interface State Density of Diamond MOSFET Using N-Type Body with Various Phosphorus Concentrations. Appl. Phys. Lett. 114, 42101 (2019).CrossRef T. Matsumoto, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, T. Inokuma, and N. Tokuda, Inversion Channel Mobility and Interface State Density of Diamond MOSFET Using N-Type Body with Various Phosphorus Concentrations. Appl. Phys. Lett. 114, 42101 (2019).CrossRef
9.
go back to reference X. Chen, C. Liu, and S. Mao, Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Lett. 12, 1 (2020).CrossRef X. Chen, C. Liu, and S. Mao, Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Lett. 12, 1 (2020).CrossRef
10.
go back to reference Z. Ramezani and A.A. Orouji, Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano Scale SOI MOSFETs. J. Electron. Mater. 46, 2269 (2017).CrossRef Z. Ramezani and A.A. Orouji, Amended Electric Field Distribution: A Reliable Technique for Electrical Performance Improvement in Nano Scale SOI MOSFETs. J. Electron. Mater. 46, 2269 (2017).CrossRef
11.
go back to reference F. Kenarangi and I. Partin-Vaisband, Leveraging Independent Double-Gate FinFET Devices for Machine Learning Classification. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 4356 (2019).CrossRef F. Kenarangi and I. Partin-Vaisband, Leveraging Independent Double-Gate FinFET Devices for Machine Learning Classification. IEEE Trans. Circuits Syst. I Regul. Pap. 66, 4356 (2019).CrossRef
12.
go back to reference D. Nagy, G. Indalecio, A.J. Garcia-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, FinFET versus Gate-All-around Nanowire FET: Performance, Scaling, and Variability. IEEE J. Electron Devices Soc. 6, 332 (2018).CrossRef D. Nagy, G. Indalecio, A.J. Garcia-Loureiro, M.A. Elmessary, K. Kalna, and N. Seoane, FinFET versus Gate-All-around Nanowire FET: Performance, Scaling, and Variability. IEEE J. Electron Devices Soc. 6, 332 (2018).CrossRef
13.
go back to reference V.M. Srivastava, K.S. Yadav, and G. Singh, Design and Performance Analysis of Cylindrical Surrounding Double-Gate MOSFET for RF Switch. Microelectronics J. 42, 1124 (2011).CrossRef V.M. Srivastava, K.S. Yadav, and G. Singh, Design and Performance Analysis of Cylindrical Surrounding Double-Gate MOSFET for RF Switch. Microelectronics J. 42, 1124 (2011).CrossRef
14.
go back to reference M.A. Uchechukwu and V.M. Srivastava, Channel Length Scaling Pattern for Cylindrical Surrounding Double-Gate (CSDG) MOSFET. IEEE Access 8, 121204 (2020).CrossRef M.A. Uchechukwu and V.M. Srivastava, Channel Length Scaling Pattern for Cylindrical Surrounding Double-Gate (CSDG) MOSFET. IEEE Access 8, 121204 (2020).CrossRef
15.
go back to reference C.W. Shih, A. Chin, C.F. Lu, and W.F. Su, Remarkably High Hole Mobility Metal-Oxide Thin-Film Transistors. Sci. Rep. 8, 1 (2018).CrossRef C.W. Shih, A. Chin, C.F. Lu, and W.F. Su, Remarkably High Hole Mobility Metal-Oxide Thin-Film Transistors. Sci. Rep. 8, 1 (2018).CrossRef
16.
go back to reference J.A. Caraveo-Frescas, P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, and H.N. Alshareef, Record Mobility in Transparent P-Type Tin Monoxide Films and Devices by Phase Engineering. ACS Nano 7, 5160 (2013).CrossRef J.A. Caraveo-Frescas, P.K. Nayak, H.A. Al-Jawhari, D.B. Granato, U. Schwingenschlögl, and H.N. Alshareef, Record Mobility in Transparent P-Type Tin Monoxide Films and Devices by Phase Engineering. ACS Nano 7, 5160 (2013).CrossRef
17.
go back to reference V. G. Akkili, R. Thangavel, and V. M. Srivastava, Influence of Dielectrics and Channel Defects on the Electrical Performance of Oxide-Based p-Channel TFTs for CMOS Applications, in LAEDC 2021 - IEEE Latin America Electron Devices Conference (2021), p. 19. V. G. Akkili, R. Thangavel, and V. M. Srivastava, Influence of Dielectrics and Channel Defects on the Electrical Performance of Oxide-Based p-Channel TFTs for CMOS Applications, in LAEDC 2021 - IEEE Latin America Electron Devices Conference (2021), p. 19.
18.
go back to reference Y. Xie, S. Ouyang, D. Wang, W.Y. Lee, and H.H. Fong, Highly Smooth and Conductive Silver Film with Metallo-Organic Decomposition Ink for All-Solution-Processed Flexible Organic Thin-Film Transistors. J. Mater. Sci. 55, 15908 (2020).CrossRef Y. Xie, S. Ouyang, D. Wang, W.Y. Lee, and H.H. Fong, Highly Smooth and Conductive Silver Film with Metallo-Organic Decomposition Ink for All-Solution-Processed Flexible Organic Thin-Film Transistors. J. Mater. Sci. 55, 15908 (2020).CrossRef
19.
go back to reference I.B. Misirlioglu, C. Sen, M.T. Kesim, and S.P. Alpay, Low-Voltage Ferroelectric-Paraelectric Superlattices as Gate Materials for Field-Effect Transistors. J. Mater. Sci. 51, 487 (2015).CrossRef I.B. Misirlioglu, C. Sen, M.T. Kesim, and S.P. Alpay, Low-Voltage Ferroelectric-Paraelectric Superlattices as Gate Materials for Field-Effect Transistors. J. Mater. Sci. 51, 487 (2015).CrossRef
20.
go back to reference H. Du, X. Lin, Z. Xu, and D. Chu, Electric Double-Layer Transistors: A Review of Recent Progress, Vol. 50 (Berlin: Springer, 2015). H. Du, X. Lin, Z. Xu, and D. Chu, Electric Double-Layer Transistors: A Review of Recent Progress, Vol. 50 (Berlin: Springer, 2015).
21.
go back to reference K.A. Jones, T.P. Chow, M. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, and G.S. Tompa, AlGaN Devices and Growth of Device Structures. J. Mater. Sci. 50, 3267 (2015).CrossRef K.A. Jones, T.P. Chow, M. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, and G.S. Tompa, AlGaN Devices and Growth of Device Structures. J. Mater. Sci. 50, 3267 (2015).CrossRef
22.
go back to reference V.C. Anitha, A.N. Banerjee, and S.W. Joo, Recent Developments in TiO2 as N- and p-Type Transparent Semiconductors: Synthesis, Modification, Properties, and Energy-Related Applications. J. Mater. Sci. 50, 7495 (2015).CrossRef V.C. Anitha, A.N. Banerjee, and S.W. Joo, Recent Developments in TiO2 as N- and p-Type Transparent Semiconductors: Synthesis, Modification, Properties, and Energy-Related Applications. J. Mater. Sci. 50, 7495 (2015).CrossRef
23.
go back to reference S. Locci, M. Maccioni, E. Orgiu, and A. Bonfiglio, An Analytical Model for Cylindrical Thin-Film Transistors. IEEE Trans. Electron Devices 54, 2362 (2007).CrossRef S. Locci, M. Maccioni, E. Orgiu, and A. Bonfiglio, An Analytical Model for Cylindrical Thin-Film Transistors. IEEE Trans. Electron Devices 54, 2362 (2007).CrossRef
24.
go back to reference V. G. Akkili and V. M. Srivastava, 3D Numerical Simulation and Electrical Performance Analysis of P-Channel Cylindrical TFTs for New Man-Machine Interface Applications, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 409. V. G. Akkili and V. M. Srivastava, 3D Numerical Simulation and Electrical Performance Analysis of P-Channel Cylindrical TFTs for New Man-Machine Interface Applications, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 409.
25.
go back to reference J.H.K. Verma, S. Haldar, R.S. Gupta, and M. Gupta, Modeling and Simulation of Cylindrical Surrounding Double-Gate (CSDG) MOSFET with Vacuum Gate Dielectric for Improved Hot-Carrier Reliability and RF Performance. J. Comput. Electron. 15, 657 (2016).CrossRef J.H.K. Verma, S. Haldar, R.S. Gupta, and M. Gupta, Modeling and Simulation of Cylindrical Surrounding Double-Gate (CSDG) MOSFET with Vacuum Gate Dielectric for Improved Hot-Carrier Reliability and RF Performance. J. Comput. Electron. 15, 657 (2016).CrossRef
26.
go back to reference K.P. Pradhan, M.R. Kumar, S.K. Mohapatra, and P.K. Sahu, Analytical Modeling of Threshold Voltage for Cylindrical Gate All Around (CGAA) MOSFET Using Center Potential. Ain Shams Eng. J. 6, 1171 (2015).CrossRef K.P. Pradhan, M.R. Kumar, S.K. Mohapatra, and P.K. Sahu, Analytical Modeling of Threshold Voltage for Cylindrical Gate All Around (CGAA) MOSFET Using Center Potential. Ain Shams Eng. J. 6, 1171 (2015).CrossRef
27.
go back to reference K. Ellmer, Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 6, 809 (2012).CrossRef K. Ellmer, Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 6, 809 (2012).CrossRef
28.
go back to reference M. Mativenga, F. Haque, M.M. Billah, and J.G. Um, Origin of Light Instability in Amorphous IGZO Thin-Film Transistors and Its Suppression. Sci. Rep. 11, 1 (2021).CrossRef M. Mativenga, F. Haque, M.M. Billah, and J.G. Um, Origin of Light Instability in Amorphous IGZO Thin-Film Transistors and Its Suppression. Sci. Rep. 11, 1 (2021).CrossRef
29.
go back to reference Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, and H.N. Alshareef, Recent Developments in P-Type Oxide Semiconductor Materials and Devices. Adv. Mater. 28, 3831 (2016).CrossRef Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, and H.N. Alshareef, Recent Developments in P-Type Oxide Semiconductor Materials and Devices. Adv. Mater. 28, 3831 (2016).CrossRef
30.
go back to reference R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, Complementary Metal Oxide Semiconductor Technology with and on Paper. Adv. Mater. 23, 4491 (2011).CrossRef R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, and E. Fortunato, Complementary Metal Oxide Semiconductor Technology with and on Paper. Adv. Mater. 23, 4491 (2011).CrossRef
31.
go back to reference R. Barros, K. J. Saji, J. C. Waerenborgh, P. Barquinha, L. Pereira, E. Carlos, R. Martins, and E. Fortunato, Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. Nanomaterials 9, (2019). R. Barros, K. J. Saji, J. C. Waerenborgh, P. Barquinha, L. Pereira, E. Carlos, R. Martins, and E. Fortunato, Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. Nanomaterials 9, (2019).
32.
go back to reference Z.W. Shang, H.H. Hsu, Z.W. Zheng, and C.H. Cheng, Progress and Challenges in P-Type Oxide-Based Thin Film Transistors. Nanotechnol. Rev. 8, 422 (2019).CrossRef Z.W. Shang, H.H. Hsu, Z.W. Zheng, and C.H. Cheng, Progress and Challenges in P-Type Oxide-Based Thin Film Transistors. Nanotechnol. Rev. 8, 422 (2019).CrossRef
33.
go back to reference A.V. Gowd and R. Thangavel, Hydrothermal Growth of Undoped and Zn-Doped SnO Nanocrystals: A Frequency Dependence of AC Conductivity and Dielectric Response Studies. Semiconductors 54, 73 (2020).CrossRef A.V. Gowd and R. Thangavel, Hydrothermal Growth of Undoped and Zn-Doped SnO Nanocrystals: A Frequency Dependence of AC Conductivity and Dielectric Response Studies. Semiconductors 54, 73 (2020).CrossRef
34.
go back to reference N. Gowthaman and V.M. Srivastava, Analysis of InN/La2O3 twosome for double-gate MOSFETs for radio frequency applications. Mater. Sci. Forum 1048, 147 (2022).CrossRef N. Gowthaman and V.M. Srivastava, Analysis of InN/La2O3 twosome for double-gate MOSFETs for radio frequency applications. Mater. Sci. Forum 1048, 147 (2022).CrossRef
35.
go back to reference A. Liu, H. Zhu, W.T. Park, S.J. Kim, H. Kim, M.G. Kim, and Y.Y. Noh, High-Performance p-Channel Transistors with Transparent Zn Doped-CuI. Nat. Commun. 11, 1 (2020). A. Liu, H. Zhu, W.T. Park, S.J. Kim, H. Kim, M.G. Kim, and Y.Y. Noh, High-Performance p-Channel Transistors with Transparent Zn Doped-CuI. Nat. Commun. 11, 1 (2020).
36.
go back to reference M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Serby, P. Jenus, B.C. Hauback, R. Tofan, A.E. Gunnaes, C. Persson, O.M. Levvik, and T.G. Finstad, The Role of Grain Boundary Scattering in Reducing the Thermal Conductivity of Polycrystalline XNiSn (X = Hf, Zr, Ti) Half-Heusler Alloys. Sci. Rep. 7, 1 (2017).CrossRef M. Schrade, K. Berland, S.N.H. Eliassen, M.N. Guzik, C. Echevarria-Bonet, M.H. Serby, P. Jenus, B.C. Hauback, R. Tofan, A.E. Gunnaes, C. Persson, O.M. Levvik, and T.G. Finstad, The Role of Grain Boundary Scattering in Reducing the Thermal Conductivity of Polycrystalline XNiSn (X = Hf, Zr, Ti) Half-Heusler Alloys. Sci. Rep. 7, 1 (2017).CrossRef
37.
go back to reference V. G. Akkili and V. M. Srivastava, Performance Optimization of P-Channel SnO Cylindrical Thin Film Transistors (CTFT) Using 3D Modelling, in 34th International System-on-Chip Conference (SOCC) (IEEE, 2022), p. 112. V. G. Akkili and V. M. Srivastava, Performance Optimization of P-Channel SnO Cylindrical Thin Film Transistors (CTFT) Using 3D Modelling, in 34th International System-on-Chip Conference (SOCC) (IEEE, 2022), p. 112.
38.
go back to reference K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Effect of Plasma Fluorination in P-Type SnO TFTs: Experiments, Modeling, and Simulation. IEEE Trans. Electron Devices 66, 1314 (2019).CrossRef K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Effect of Plasma Fluorination in P-Type SnO TFTs: Experiments, Modeling, and Simulation. IEEE Trans. Electron Devices 66, 1314 (2019).CrossRef
39.
go back to reference X. Li, L. Liang, H. Cao, R. Qin, H. Zhang, J. Gao, and F. Zhuge, Determination of Some Basic Physical Parameters of SnO Based on SnO/Si Pn Heterojunctions. Appl. Phys. Lett. 106, (2015). X. Li, L. Liang, H. Cao, R. Qin, H. Zhang, J. Gao, and F. Zhuge, Determination of Some Basic Physical Parameters of SnO Based on SnO/Si Pn Heterojunctions. Appl. Phys. Lett. 106, (2015).
40.
go back to reference A.W. Lee, D. Le, K. Matsuzaki, and K. Nomura, Hydrogen-Defect Termination in SnO for p-Channel TFTs. ACS Appl. Electron. Mater. 2, 1162 (2020).CrossRef A.W. Lee, D. Le, K. Matsuzaki, and K. Nomura, Hydrogen-Defect Termination in SnO for p-Channel TFTs. ACS Appl. Electron. Mater. 2, 1162 (2020).CrossRef
41.
go back to reference K.J. Saji, Y.P. Venkata Subbaiah, K. Tian, and A. Tiwari, P-Type SnO Thin Films and SnO/ZnO Heterostructures for All-Oxide Electronic and Optoelectronic Device Applications. Thin Solid Films 605, 193 (2016).CrossRef K.J. Saji, Y.P. Venkata Subbaiah, K. Tian, and A. Tiwari, P-Type SnO Thin Films and SnO/ZnO Heterostructures for All-Oxide Electronic and Optoelectronic Device Applications. Thin Solid Films 605, 193 (2016).CrossRef
42.
go back to reference D.P. Rai, T.V. Vu, A. Laref, M.A. Hossain, E. Haque, S. Ahmad, R. Khenata, and R.K. Thapa, Electronic Properties and Low Lattice Thermal Conductivity (Κl) of Mono-Layer (ML) MoS2: FP-LAPW Incorporated with Spin-Orbit Coupling (SOC). RSC Adv. 10, 18830 (2020).CrossRef D.P. Rai, T.V. Vu, A. Laref, M.A. Hossain, E. Haque, S. Ahmad, R. Khenata, and R.K. Thapa, Electronic Properties and Low Lattice Thermal Conductivity (Κl) of Mono-Layer (ML) MoS2: FP-LAPW Incorporated with Spin-Orbit Coupling (SOC). RSC Adv. 10, 18830 (2020).CrossRef
43.
go back to reference W.L. Hsue and W.C. Chang, Real Discrete Fractional Fourier, Hartley, Generalized Fourier and Generalized Hartley Transforms with Many Parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2594 (2015).CrossRef W.L. Hsue and W.C. Chang, Real Discrete Fractional Fourier, Hartley, Generalized Fourier and Generalized Hartley Transforms with Many Parameters. IEEE Trans. Circuits Syst. I Regul. Pap. 62, 2594 (2015).CrossRef
44.
go back to reference P. Blaha, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vol. 2 (2018). P. Blaha, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vol. 2 (2018).
45.
go back to reference A.F. Paterson and T.D. Anthopoulos, Enabling Thin-Film Transistor Technologies and the Device Metrics That Matter. Nat. Commun. 9, 1 (2018).CrossRef A.F. Paterson and T.D. Anthopoulos, Enabling Thin-Film Transistor Technologies and the Device Metrics That Matter. Nat. Commun. 9, 1 (2018).CrossRef
46.
go back to reference H. Hu, J. Zhu, M. Chen, T. Guo, and F. Li, Inkjet-Printed p-Type Nickel Oxide Thin-Film Transistor. Appl. Surf. Sci. 441, 295 (2018).CrossRef H. Hu, J. Zhu, M. Chen, T. Guo, and F. Li, Inkjet-Printed p-Type Nickel Oxide Thin-Film Transistor. Appl. Surf. Sci. 441, 295 (2018).CrossRef
47.
go back to reference Z. Chen, L. Lan, and J. Peng, Approaching Subthreshold-Swing Limit for Thin-Film Transistors by Using a Giant-Dielectric-Constant Gate Dielectric. RSC Adv. 9, 27117 (2019).CrossRef Z. Chen, L. Lan, and J. Peng, Approaching Subthreshold-Swing Limit for Thin-Film Transistors by Using a Giant-Dielectric-Constant Gate Dielectric. RSC Adv. 9, 27117 (2019).CrossRef
48.
go back to reference K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Physical Modeling of P-Type Fluorinated Al-Doped Tin-Oxide Thin Film Transistors. IEEE J. Electron Devices Soc. 8, 948 (2020).CrossRef K. Rajshekar, H.H. Hsu, K.U.M. Kumar, P. Sathyanarayanan, V. Velmurugan, C.H. Cheng, and D. Kannadassan, Physical Modeling of P-Type Fluorinated Al-Doped Tin-Oxide Thin Film Transistors. IEEE J. Electron Devices Soc. 8, 948 (2020).CrossRef
49.
go back to reference P.C. Chen, Y.C. Chiu, Z.W. Zheng, M.H. Lin, C.H. Cheng, G.L. Liou, H.H. Hsu, and H.L. Kao, Fast Low-Temperature Plasma Process for the Application of Flexible Tin-Oxide-Channel Thin Film Transistors. IEEE Trans. Nanotechnol. 16, 876 (2017).CrossRef P.C. Chen, Y.C. Chiu, Z.W. Zheng, M.H. Lin, C.H. Cheng, G.L. Liou, H.H. Hsu, and H.L. Kao, Fast Low-Temperature Plasma Process for the Application of Flexible Tin-Oxide-Channel Thin Film Transistors. IEEE Trans. Nanotechnol. 16, 876 (2017).CrossRef
50.
go back to reference W. Maeng, S.H. Lee, J.D. Kwon, J. Park, and J.S. Park, Atomic Layer Deposited P-Type Copper Oxide Thin Films and the Associated Thin Film Transistor Properties. Ceram. Int. 42, 5517 (2016).CrossRef W. Maeng, S.H. Lee, J.D. Kwon, J. Park, and J.S. Park, Atomic Layer Deposited P-Type Copper Oxide Thin Films and the Associated Thin Film Transistor Properties. Ceram. Int. 42, 5517 (2016).CrossRef
51.
go back to reference J. Jiang, X. Wang, Q. Zhang, J. Li, and X.X. Zhang, Thermal Oxidation of Ni Films for P-Type Thin-Film Transistors. Phys. Chem. Chem. Phys. 15, 6875 (2013).CrossRef J. Jiang, X. Wang, Q. Zhang, J. Li, and X.X. Zhang, Thermal Oxidation of Ni Films for P-Type Thin-Film Transistors. Phys. Chem. Chem. Phys. 15, 6875 (2013).CrossRef
52.
go back to reference Y.J. Han, Y.J. Choi, C.Y. Jeong, D. Lee, S.H. Song, and H.I. Kwon, Environment-Dependent Bias Stress Stability of P-Type SnO Thin-Film Transistors. IEEE Electron Device Lett. 36, 466 (2015).CrossRef Y.J. Han, Y.J. Choi, C.Y. Jeong, D. Lee, S.H. Song, and H.I. Kwon, Environment-Dependent Bias Stress Stability of P-Type SnO Thin-Film Transistors. IEEE Electron Device Lett. 36, 466 (2015).CrossRef
53.
go back to reference V. G. Akkili and V. M. Srivastava, Modeling and Electrical Performance Optimization of P-Type SnO-Based Cylindrical Thin-Film Transistors, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 834. V. G. Akkili and V. M. Srivastava, Modeling and Electrical Performance Optimization of P-Type SnO-Based Cylindrical Thin-Film Transistors, in Progress in Electromagnetics Research Symposium, Vols. 2021-Novem (IEEE, 2021), p. 834.
54.
go back to reference C.W. Zhong, H.C. Lin, K.C. Liu, and T.Y. Huang, Improving Electrical Performances of P-Type SnO Thin-Film Transistors Using Double-Gated Structure. IEEE Electron Device Lett. 36, 1053 (2015).CrossRef C.W. Zhong, H.C. Lin, K.C. Liu, and T.Y. Huang, Improving Electrical Performances of P-Type SnO Thin-Film Transistors Using Double-Gated Structure. IEEE Electron Device Lett. 36, 1053 (2015).CrossRef
55.
go back to reference P.C. Chen, Y.C. Chiu, Z.W. Zheng, C.H. Cheng, and Y.H. Wu, P-Type Tin-Oxide Thin Film Transistors for Blue-Light Detection Application. Phys. Status Solidi Rapid Res. Lett. 10, 919 (2016).CrossRef P.C. Chen, Y.C. Chiu, Z.W. Zheng, C.H. Cheng, and Y.H. Wu, P-Type Tin-Oxide Thin Film Transistors for Blue-Light Detection Application. Phys. Status Solidi Rapid Res. Lett. 10, 919 (2016).CrossRef
56.
go back to reference C. Avis, H.R. Hwang, and J. Jang, Effect of Channel Layer Thickness on the Performance of Indium-Zinc-Tin Oxide Thin Film Transistors Manufactured by Inkjet Printing. ACS Appl. Mater. Interfaces 6, 10941 (2014).CrossRef C. Avis, H.R. Hwang, and J. Jang, Effect of Channel Layer Thickness on the Performance of Indium-Zinc-Tin Oxide Thin Film Transistors Manufactured by Inkjet Printing. ACS Appl. Mater. Interfaces 6, 10941 (2014).CrossRef
57.
go back to reference L. Qiang, W. Liu, Y. Pei, G. Wang, and R. Yao, Trap States Extraction of P-Channel SnO Thin-Film Transistors Based on Percolation and Multiple Trapping Carrier Conductions. Solid. State. Electron. 129, 163 (2017).CrossRef L. Qiang, W. Liu, Y. Pei, G. Wang, and R. Yao, Trap States Extraction of P-Channel SnO Thin-Film Transistors Based on Percolation and Multiple Trapping Carrier Conductions. Solid. State. Electron. 129, 163 (2017).CrossRef
58.
go back to reference L.T. Nguyen and G. Makov, High-pressure Phases of Sno and Pbo: A Density Functional Theory Combined with an Evolutionary Algorithm Approach. Materials (Basel). 14, 6552 (2021).CrossRef L.T. Nguyen and G. Makov, High-pressure Phases of Sno and Pbo: A Density Functional Theory Combined with an Evolutionary Algorithm Approach. Materials (Basel). 14, 6552 (2021).CrossRef
59.
go back to reference C. Bhandari and W.R.L. Lambrecht, Instability of the Layered Orthorhombic Post-Perovskite Phase of SrTiO3 and Other Candidate Orthorhombic Phases under Pressure. Solid State Commun. 274, 27 (2018).CrossRef C. Bhandari and W.R.L. Lambrecht, Instability of the Layered Orthorhombic Post-Perovskite Phase of SrTiO3 and Other Candidate Orthorhombic Phases under Pressure. Solid State Commun. 274, 27 (2018).CrossRef
60.
go back to reference D. Singh, S.K. Gupta, I. Lukačević, M. Mužević, Y. Sonvane, and R. Ahuja, Effect of Electric Field on Optoelectronic Properties of Indiene Monolayer for Photoelectric Nanodevices. Sci. Rep. 9, 1 (2019).CrossRef D. Singh, S.K. Gupta, I. Lukačević, M. Mužević, Y. Sonvane, and R. Ahuja, Effect of Electric Field on Optoelectronic Properties of Indiene Monolayer for Photoelectric Nanodevices. Sci. Rep. 9, 1 (2019).CrossRef
Metadata
Title
Simulation Analysis of High Field-Effect Mobility in p-Channel-Based Cylindrical Thin-Film Transistors
Authors
Viswanath G. Akkili
N. Prudhvi Raju
R. Thangavel
Viranjay M. Srivastava
Publication date
21-06-2022
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 9/2022
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-09753-x

Other articles of this Issue 9/2022

Journal of Electronic Materials 9/2022 Go to the issue