Skip to main content
Top
Published in: Optical and Quantum Electronics 1/2024

01-01-2024

Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach

Authors: Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej

Published in: Optical and Quantum Electronics | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the recent decade, several numerical procedures are developed based on the radial basis functions (RBFs) in the strong and the weak form of the mathematical model. These numerical algorithms have been used to solve a wide range of differential equations. However, the accuracy of RBFs collocation method for some partial differential equations (PDEs) is low thus a modification of RBFs collocation plan is required. The main aim of the current paper is to employ an improvement of RBFs collocation algorithm i.e. rational RBFs (RRBFs) collocation method based on the partition of unity (PU) idea to get the numerical solution of the multi-dimensional Ginzburg–Landau equation. It is clear that the RBFs collocation approach is an important numerical procedure for solving PDEs in non-rectangular physical regions. For differential equations with sufficiently smooth solutions, the RBF collocation technique generates acceptable and efficient accuracy. The RBF collocation method may produce solutions with non-physical oscillations for the underlying functions which have steep gradients or discontinuities. Using a fourth-order time-split approach and rational RBFs (RRBFs) collocation method, a new numerical procedure is proposed. First, a fourth-order time-split approach is used to discrete the time variable. Then, a combination of RBFs-PU collocation technique has been developed to get a full-discrete scheme. At the end, several examples have been studied to show the stability, convergence, and accuracy of the proposed numerical algorithm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbaszadeh, M., Dehghan, M.: The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic–quintic complex Ginzburg–Landau equations on complicated geometries. Eng. Comput. 38(2), 1543–1557 (2022) Abbaszadeh, M., Dehghan, M.: The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic–quintic complex Ginzburg–Landau equations on complicated geometries. Eng. Comput. 38(2), 1543–1557 (2022)
go back to reference Abbaszadeh, M., Bagheri Salec, A., Jebur, A.S.: Integrated radial basis function technique to simulate the nonlinear system of time fractional distributed-order diffusion equation with graded time-mesh discretization. Eng. Anal. Bound. Elem. 156, 57–69 (2023)MathSciNet Abbaszadeh, M., Bagheri Salec, A., Jebur, A.S.: Integrated radial basis function technique to simulate the nonlinear system of time fractional distributed-order diffusion equation with graded time-mesh discretization. Eng. Anal. Bound. Elem. 156, 57–69 (2023)MathSciNet
go back to reference Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
go back to reference Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS
go back to reference Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A.: Modulation instability analysis and optical solutions of an extended (2 + 1)-dimensional perturbed nonlinear Schrödinger equation. Results Phys. 45, 106255 (2023) Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A.: Modulation instability analysis and optical solutions of an extended (2 + 1)-dimensional perturbed nonlinear Schrödinger equation. Results Phys. 45, 106255 (2023)
go back to reference Bhatt, H.P., Khaliq, A.Q.M.: Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations. Appl. Math. Comput. 228, 271–291 (2014)MathSciNet Bhatt, H.P., Khaliq, A.Q.M.: Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations. Appl. Math. Comput. 228, 271–291 (2014)MathSciNet
go back to reference Buhmann, M.D., De Marchi, S., Perracchione, E.: Analysis of a new class of rational RBF expansions. IMA J. Numer. Anal. 40, 1972–1993 (2020)MathSciNet Buhmann, M.D., De Marchi, S., Perracchione, E.: Analysis of a new class of rational RBF expansions. IMA J. Numer. Anal. 40, 1972–1993 (2020)MathSciNet
go back to reference De Marchi, S., Martinez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)MathSciNet De Marchi, S., Martinez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)MathSciNet
go back to reference Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)MathSciNet Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)MathSciNet
go back to reference Dehghan, M., Taleei, A.: A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)ADS Dehghan, M., Taleei, A.: A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)ADS
go back to reference Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)MathSciNet Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)MathSciNet
go back to reference Djoko, M., Djazet, A., Tabi, C.B., Kofane, T.C.: Impact of higher-order effects on the dynamics of soliton solutions in the (3 + 1)D cubic–quintic–septic complex Ginzburg–Landau equation with higher-order dispersion terms. Optik 281, 170834 (2023)ADS Djoko, M., Djazet, A., Tabi, C.B., Kofane, T.C.: Impact of higher-order effects on the dynamics of soliton solutions in the (3 + 1)D cubic–quintic–septic complex Ginzburg–Landau equation with higher-order dispersion terms. Optik 281, 170834 (2023)ADS
go back to reference Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022) Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022)
go back to reference Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)MathSciNet Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)MathSciNet
go back to reference Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNet Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNet
go back to reference Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive definite kernels. Adv. Comput. Math. 47(2021), 74 (2021)MathSciNet Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive definite kernels. Adv. Comput. Math. 47(2021), 74 (2021)MathSciNet
go back to reference Farshadmoghadam, F., Azodi, H.D., Yaghouti, M.R.: An efficient alternative kernel of Gaussian radial basis function for solving nonlinear integro-differential equations. Iran. J. Sci. Technol. Trans. Sci. 46, 869–881 (2022)MathSciNet Farshadmoghadam, F., Azodi, H.D., Yaghouti, M.R.: An efficient alternative kernel of Gaussian radial basis function for solving nonlinear integro-differential equations. Iran. J. Sci. Technol. Trans. Sci. 46, 869–881 (2022)MathSciNet
go back to reference Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, USA (2007) Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, USA (2007)
go back to reference Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods using Matlab. World Scientific Publishing Company, Singapore (2015) Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods using Matlab. World Scientific Publishing Company, Singapore (2015)
go back to reference Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNet Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNet
go back to reference Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Arasan, B.T.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020) Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Arasan, B.T.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020)
go back to reference Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 44, 106171 (2023) Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 44, 106171 (2023)
go back to reference Guo, B.L., Wang, Y.F.: Mixed-type soliton solutions for the N-coupled higher-order nonlinear Schrödinger equation in optical fibers. Chaos Solitons Fractals 93, 246–251 (2016)ADSMathSciNet Guo, B.L., Wang, Y.F.: Mixed-type soliton solutions for the N-coupled higher-order nonlinear Schrödinger equation in optical fibers. Chaos Solitons Fractals 93, 246–251 (2016)ADSMathSciNet
go back to reference Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its application in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)ADSMathSciNet Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its application in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)ADSMathSciNet
go back to reference Ilati, M.: A meshless local moving Kriging method for solving Ginzburg–Landau equation on irregular domains. Eur. Phys. J. Plus 135(11), 1–8 (2020) Ilati, M.: A meshless local moving Kriging method for solving Ginzburg–Landau equation on irregular domains. Eur. Phys. J. Plus 135(11), 1–8 (2020)
go back to reference Ismail, M.S., Alamri, S.Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333–351 (2004)MathSciNet Ismail, M.S., Alamri, S.Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333–351 (2004)MathSciNet
go back to reference Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007) Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007)
go back to reference Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)ADSMathSciNet Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)ADSMathSciNet
go back to reference Kol, G.R., Woafo, P.: Exact solutions for a system of two coupled discrete nonlinear Schrödinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5956–5962 (2013)MathSciNet Kol, G.R., Woafo, P.: Exact solutions for a system of two coupled discrete nonlinear Schrödinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5956–5962 (2013)MathSciNet
go back to reference Kurtinaitis, A., Ivanauska, F.: Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9(3), 247–258 (2004)MathSciNet Kurtinaitis, A., Ivanauska, F.: Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9(3), 247–258 (2004)MathSciNet
go back to reference Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNet Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNet
go back to reference Miura, R.M.: Bäcklund Transformation. Springer, Berlin (1978) Miura, R.M.: Bäcklund Transformation. Springer, Berlin (1978)
go back to reference Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)MathSciNet Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)MathSciNet
go back to reference Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 106, 783–813 (2021) Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 106, 783–813 (2021)
go back to reference Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 143, 14–27 (2022)MathSciNet Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 143, 14–27 (2022)MathSciNet
go back to reference Nikan, O., Avazzadeh, Z., Machado, J.A.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(2023), 2327–2344 (2023) Nikan, O., Avazzadeh, Z., Machado, J.A.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(2023), 2327–2344 (2023)
go back to reference Perracchione, E.: Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects. Comput. Appl. Math. 37, 4633–4648 (2018)MathSciNet Perracchione, E.: Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects. Comput. Appl. Math. 37, 4633–4648 (2018)MathSciNet
go back to reference Sarra, S.A., Bai, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Appl. Numer. Math. 130, 131–142 (2018)MathSciNet Sarra, S.A., Bai, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Appl. Numer. Math. 130, 131–142 (2018)MathSciNet
go back to reference Sun, J.Q., Gu, X.Y., Ma, Z.Q.: Numerical study of the solitons waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311–328 (2004)MathSciNet Sun, J.Q., Gu, X.Y., Ma, Z.Q.: Numerical study of the solitons waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311–328 (2004)MathSciNet
go back to reference Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS
go back to reference Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)ADSMathSciNet Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)ADSMathSciNet
go back to reference Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)ADS Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)ADS
go back to reference Wang, Y.F., Tian, B., Sun, W.R., Liu, R.X.: Vector rogue waves for the N-coupled generalized nonlinear Schrödinger equations with cubic–quintic nonlinearity in an optical fiber. Optik 127(14), 5750–5756 (2016)ADS Wang, Y.F., Tian, B., Sun, W.R., Liu, R.X.: Vector rogue waves for the N-coupled generalized nonlinear Schrödinger equations with cubic–quintic nonlinearity in an optical fiber. Optik 127(14), 5750–5756 (2016)ADS
go back to reference Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities. Math. Comput. Model. 43, 802–808 (2006)MathSciNet Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities. Math. Comput. Model. 43, 802–808 (2006)MathSciNet
go back to reference Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)ADSMathSciNet Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)ADSMathSciNet
go back to reference Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, New York (2009) Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, New York (2009)
go back to reference Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)ADSMathSciNet Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)ADSMathSciNet
go back to reference Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 28, 167061 (2021)ADS Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 28, 167061 (2021)ADS
go back to reference Zamani-Gharaghoshi, H., Dehghan, M., Abbaszadeh, M.: Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach. Eng. Anal. Bound. Elem. 152, 575–581 (2023)MathSciNet Zamani-Gharaghoshi, H., Dehghan, M., Abbaszadeh, M.: Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach. Eng. Anal. Bound. Elem. 152, 575–581 (2023)MathSciNet
go back to reference Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)ADS Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)ADS
Metadata
Title
Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach
Authors
Mostafa Abbaszadeh
AliReza Bagheri Salec
Taghreed Abdul-Kareem Hatim Aal-Ezirej
Publication date
01-01-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 1/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05648-1

Other articles of this Issue 1/2024

Optical and Quantum Electronics 1/2024 Go to the issue