Skip to main content
Erschienen in: Optical and Quantum Electronics 1/2024

01.01.2024

Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach

verfasst von: Mostafa Abbaszadeh, AliReza Bagheri Salec, Taghreed Abdul-Kareem Hatim Aal-Ezirej

Erschienen in: Optical and Quantum Electronics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the recent decade, several numerical procedures are developed based on the radial basis functions (RBFs) in the strong and the weak form of the mathematical model. These numerical algorithms have been used to solve a wide range of differential equations. However, the accuracy of RBFs collocation method for some partial differential equations (PDEs) is low thus a modification of RBFs collocation plan is required. The main aim of the current paper is to employ an improvement of RBFs collocation algorithm i.e. rational RBFs (RRBFs) collocation method based on the partition of unity (PU) idea to get the numerical solution of the multi-dimensional Ginzburg–Landau equation. It is clear that the RBFs collocation approach is an important numerical procedure for solving PDEs in non-rectangular physical regions. For differential equations with sufficiently smooth solutions, the RBF collocation technique generates acceptable and efficient accuracy. The RBF collocation method may produce solutions with non-physical oscillations for the underlying functions which have steep gradients or discontinuities. Using a fourth-order time-split approach and rational RBFs (RRBFs) collocation method, a new numerical procedure is proposed. First, a fourth-order time-split approach is used to discrete the time variable. Then, a combination of RBFs-PU collocation technique has been developed to get a full-discrete scheme. At the end, several examples have been studied to show the stability, convergence, and accuracy of the proposed numerical algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic–quintic complex Ginzburg–Landau equations on complicated geometries. Eng. Comput. 38(2), 1543–1557 (2022) Abbaszadeh, M., Dehghan, M.: The fourth-order time-discrete scheme and split-step direct meshless finite volume method for solving cubic–quintic complex Ginzburg–Landau equations on complicated geometries. Eng. Comput. 38(2), 1543–1557 (2022)
Zurück zum Zitat Abbaszadeh, M., Bagheri Salec, A., Jebur, A.S.: Integrated radial basis function technique to simulate the nonlinear system of time fractional distributed-order diffusion equation with graded time-mesh discretization. Eng. Anal. Bound. Elem. 156, 57–69 (2023)MathSciNet Abbaszadeh, M., Bagheri Salec, A., Jebur, A.S.: Integrated radial basis function technique to simulate the nonlinear system of time fractional distributed-order diffusion equation with graded time-mesh discretization. Eng. Anal. Bound. Elem. 156, 57–69 (2023)MathSciNet
Zurück zum Zitat Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)
Zurück zum Zitat Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS Akram, G., Sadaf, M., Mariyam, H.: A comparative study of the optical solitons for the fractional complex Ginzburg–Landau equation using different fractional differential operators. Optik 256, 168626 (2022)ADS
Zurück zum Zitat Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A.: Modulation instability analysis and optical solutions of an extended (2 + 1)-dimensional perturbed nonlinear Schrödinger equation. Results Phys. 45, 106255 (2023) Ali, K.K., Tarla, S., Ali, M.R., Yusuf, A.: Modulation instability analysis and optical solutions of an extended (2 + 1)-dimensional perturbed nonlinear Schrödinger equation. Results Phys. 45, 106255 (2023)
Zurück zum Zitat Bhatt, H.P., Khaliq, A.Q.M.: Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations. Appl. Math. Comput. 228, 271–291 (2014)MathSciNet Bhatt, H.P., Khaliq, A.Q.M.: Higher order exponential time differencing scheme for system of coupled nonlinear Schrödinger equations. Appl. Math. Comput. 228, 271–291 (2014)MathSciNet
Zurück zum Zitat Buhmann, M.D., De Marchi, S., Perracchione, E.: Analysis of a new class of rational RBF expansions. IMA J. Numer. Anal. 40, 1972–1993 (2020)MathSciNet Buhmann, M.D., De Marchi, S., Perracchione, E.: Analysis of a new class of rational RBF expansions. IMA J. Numer. Anal. 40, 1972–1993 (2020)MathSciNet
Zurück zum Zitat De Marchi, S., Martinez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)MathSciNet De Marchi, S., Martinez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)MathSciNet
Zurück zum Zitat Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)MathSciNet Dehghan, M., Shokri, A.: A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math. Comput. Simul. 79(3), 700–715 (2008)MathSciNet
Zurück zum Zitat Dehghan, M., Taleei, A.: A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)ADS Dehghan, M., Taleei, A.: A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput. Phys. Commun. 182, 2519–2529 (2011)ADS
Zurück zum Zitat Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)MathSciNet Ding, H., Li, C.: High-order numerical algorithm and error analysis for the two-dimensional nonlinear spatial fractional complex Ginzburg–Landau equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107160 (2023)MathSciNet
Zurück zum Zitat Djoko, M., Djazet, A., Tabi, C.B., Kofane, T.C.: Impact of higher-order effects on the dynamics of soliton solutions in the (3 + 1)D cubic–quintic–septic complex Ginzburg–Landau equation with higher-order dispersion terms. Optik 281, 170834 (2023)ADS Djoko, M., Djazet, A., Tabi, C.B., Kofane, T.C.: Impact of higher-order effects on the dynamics of soliton solutions in the (3 + 1)D cubic–quintic–septic complex Ginzburg–Landau equation with higher-order dispersion terms. Optik 281, 170834 (2023)ADS
Zurück zum Zitat Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022) Drissi, M., Mansouri, M., Mesmoudi, S., Saadouni, K.: On the use of a pseudo-spectral method in the asymptotic numerical method for the resolution of the Ginzburg–Landau envelope equation. Eng. Struct. 262, 114236 (2022)
Zurück zum Zitat Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)MathSciNet Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: A reduced-order model based on integrated radial basis functions with partition of unity method for option pricing under jump-diffusion models. Eng. Anal. Bound. Elem. 155, 48–61 (2023)MathSciNet
Zurück zum Zitat Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNet Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)ADSMathSciNet
Zurück zum Zitat Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive definite kernels. Adv. Comput. Math. 47(2021), 74 (2021)MathSciNet Farazandeh, E., Mirzaei, D.: A rational RBF interpolation with conditionally positive definite kernels. Adv. Comput. Math. 47(2021), 74 (2021)MathSciNet
Zurück zum Zitat Farshadmoghadam, F., Azodi, H.D., Yaghouti, M.R.: An efficient alternative kernel of Gaussian radial basis function for solving nonlinear integro-differential equations. Iran. J. Sci. Technol. Trans. Sci. 46, 869–881 (2022)MathSciNet Farshadmoghadam, F., Azodi, H.D., Yaghouti, M.R.: An efficient alternative kernel of Gaussian radial basis function for solving nonlinear integro-differential equations. Iran. J. Sci. Technol. Trans. Sci. 46, 869–881 (2022)MathSciNet
Zurück zum Zitat Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, USA (2007) Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific, USA (2007)
Zurück zum Zitat Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods using Matlab. World Scientific Publishing Company, Singapore (2015) Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods using Matlab. World Scientific Publishing Company, Singapore (2015)
Zurück zum Zitat Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNet Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNet
Zurück zum Zitat Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Arasan, B.T.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020) Gadzhimuradov, T.A., Agalarov, A.M., Radha, R., Arasan, B.T.: Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 99, 1295–1300 (2020)
Zurück zum Zitat Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 44, 106171 (2023) Ghanbari, B., Baleanu, D.: Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations. Results Phys. 44, 106171 (2023)
Zurück zum Zitat Guo, B.L., Wang, Y.F.: Mixed-type soliton solutions for the N-coupled higher-order nonlinear Schrödinger equation in optical fibers. Chaos Solitons Fractals 93, 246–251 (2016)ADSMathSciNet Guo, B.L., Wang, Y.F.: Mixed-type soliton solutions for the N-coupled higher-order nonlinear Schrödinger equation in optical fibers. Chaos Solitons Fractals 93, 246–251 (2016)ADSMathSciNet
Zurück zum Zitat Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its application in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)ADSMathSciNet Helal, M.A.: Soliton solution of some nonlinear partial differential equations and its application in fluid mechanics. Chaos Solitons Fractals 13, 1917–1929 (2002)ADSMathSciNet
Zurück zum Zitat Ilati, M.: A meshless local moving Kriging method for solving Ginzburg–Landau equation on irregular domains. Eur. Phys. J. Plus 135(11), 1–8 (2020) Ilati, M.: A meshless local moving Kriging method for solving Ginzburg–Landau equation on irregular domains. Eur. Phys. J. Plus 135(11), 1–8 (2020)
Zurück zum Zitat Ismail, M.S., Alamri, S.Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333–351 (2004)MathSciNet Ismail, M.S., Alamri, S.Z.: Highly accurate finite difference method for coupled nonlinear Schrödinger equation. Int. J. Comput. Math. 81, 333–351 (2004)MathSciNet
Zurück zum Zitat Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007) Ismail, M.S., Taha, T.R.: A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation. Math. Comput. Simul. 74, 302–311 (2007)
Zurück zum Zitat Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)ADSMathSciNet Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)ADSMathSciNet
Zurück zum Zitat Kol, G.R., Woafo, P.: Exact solutions for a system of two coupled discrete nonlinear Schrödinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5956–5962 (2013)MathSciNet Kol, G.R., Woafo, P.: Exact solutions for a system of two coupled discrete nonlinear Schrödinger equations with a saturable nonlinearity. Appl. Math. Comput. 219, 5956–5962 (2013)MathSciNet
Zurück zum Zitat Kurtinaitis, A., Ivanauska, F.: Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9(3), 247–258 (2004)MathSciNet Kurtinaitis, A., Ivanauska, F.: Finite difference solution methods for a system of the nonlinear Schrödinger equations. Nonlinear Anal. Model. Control 9(3), 247–258 (2004)MathSciNet
Zurück zum Zitat Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNet Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)ADSMathSciNet
Zurück zum Zitat Miura, R.M.: Bäcklund Transformation. Springer, Berlin (1978) Miura, R.M.: Bäcklund Transformation. Springer, Berlin (1978)
Zurück zum Zitat Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)MathSciNet Nikan, O., Avazzadeh, Z.: A locally stabilized radial basis function partition of unity technique for the sine-Gordon system in nonlinear optics. Math. Comput. Simul. 199, 394–413 (2022)MathSciNet
Zurück zum Zitat Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 106, 783–813 (2021) Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 106, 783–813 (2021)
Zurück zum Zitat Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 143, 14–27 (2022)MathSciNet Nikan, O., Avazzadeh, Z., Rasoulizadeh, M.N.: Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 143, 14–27 (2022)MathSciNet
Zurück zum Zitat Nikan, O., Avazzadeh, Z., Machado, J.A.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(2023), 2327–2344 (2023) Nikan, O., Avazzadeh, Z., Machado, J.A.T., Rasoulizadeh, M.N.: An accurate localized meshfree collocation technique for the telegraph equation in propagation of electrical signals. Eng. Comput. 39(2023), 2327–2344 (2023)
Zurück zum Zitat Perracchione, E.: Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects. Comput. Appl. Math. 37, 4633–4648 (2018)MathSciNet Perracchione, E.: Rational RBF-based partition of unity method for efficiently and accurately approximating 3D objects. Comput. Appl. Math. 37, 4633–4648 (2018)MathSciNet
Zurück zum Zitat Sarra, S.A., Bai, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Appl. Numer. Math. 130, 131–142 (2018)MathSciNet Sarra, S.A., Bai, Y.: A rational radial basis function method for accurately resolving discontinuities and steep gradients. Appl. Numer. Math. 130, 131–142 (2018)MathSciNet
Zurück zum Zitat Sun, J.Q., Gu, X.Y., Ma, Z.Q.: Numerical study of the solitons waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311–328 (2004)MathSciNet Sun, J.Q., Gu, X.Y., Ma, Z.Q.: Numerical study of the solitons waves of the coupled nonlinear Schrödinger system. Phys. D 196, 311–328 (2004)MathSciNet
Zurück zum Zitat Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS Tang, L.: Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg–Landau equation in communication systems. Optik 276, 170639 (2023)ADS
Zurück zum Zitat Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)ADSMathSciNet Wang, M.L., Li, X.Z.: Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals 24, 1257–1268 (2005)ADSMathSciNet
Zurück zum Zitat Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)ADS Wang, M.L., Zhou, Y.B., Li, Z.B.: Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216, 67–75 (1996)ADS
Zurück zum Zitat Wang, Y.F., Tian, B., Sun, W.R., Liu, R.X.: Vector rogue waves for the N-coupled generalized nonlinear Schrödinger equations with cubic–quintic nonlinearity in an optical fiber. Optik 127(14), 5750–5756 (2016)ADS Wang, Y.F., Tian, B., Sun, W.R., Liu, R.X.: Vector rogue waves for the N-coupled generalized nonlinear Schrödinger equations with cubic–quintic nonlinearity in an optical fiber. Optik 127(14), 5750–5756 (2016)ADS
Zurück zum Zitat Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities. Math. Comput. Model. 43, 802–808 (2006)MathSciNet Wazwaz, A.M.: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities. Math. Comput. Model. 43, 802–808 (2006)MathSciNet
Zurück zum Zitat Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)ADSMathSciNet Wazwaz, A.M.: A study on linear and nonlinear Schrödinger equations by the variational iteration method. Chaos Solitons Fractals 37, 1136–1142 (2008)ADSMathSciNet
Zurück zum Zitat Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, New York (2009) Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Springer, New York (2009)
Zurück zum Zitat Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)ADSMathSciNet Wright, G.B., Fornberg, B.: Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331, 137–156 (2017)ADSMathSciNet
Zurück zum Zitat Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 28, 167061 (2021)ADS Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 28, 167061 (2021)ADS
Zurück zum Zitat Zamani-Gharaghoshi, H., Dehghan, M., Abbaszadeh, M.: Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach. Eng. Anal. Bound. Elem. 152, 575–581 (2023)MathSciNet Zamani-Gharaghoshi, H., Dehghan, M., Abbaszadeh, M.: Numerical solution of Allen–Cahn model on surfaces via an effective method based on generalized moving least squares (GMLS) approximation and the closest point approach. Eng. Anal. Bound. Elem. 152, 575–581 (2023)MathSciNet
Zurück zum Zitat Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)ADS Zhang, H.Q.: Energy-exchange collisions of vector solitons in the N-coupled mixed derivative nonlinear Schrödinger equations from the birefringent optical fibers. Opt. Commun. 290, 141–145 (2013)ADS
Metadaten
Titel
Simulation of Ginzburg–Landau equation via rational RBF partition of unity approach
verfasst von
Mostafa Abbaszadeh
AliReza Bagheri Salec
Taghreed Abdul-Kareem Hatim Aal-Ezirej
Publikationsdatum
01.01.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 1/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05648-1

Weitere Artikel der Ausgabe 1/2024

Optical and Quantum Electronics 1/2024 Zur Ausgabe

Neuer Inhalt