Skip to main content
Top
Published in: Archive of Applied Mechanics 6/2019

31-10-2018 | SPECIAL

Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour

Authors: Karsten Buckmann, Björn Kiefer, Thorsten Bartel, Andreas Menzel

Published in: Archive of Applied Mechanics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microstructure evolution in magnetic materials is typically a non-local effect, in the sense that the behaviour at a material point depends on the magnetostatic energy stored within the demagnetisation field in the entire domain. To account for this, we propose a finite element framework in which the internal state variables parameterising the magnetic and crystallographic microstructure are treated as global fields, optimising a global potential. Contrary to conventional micromagnetics, however, the microscale is not spatially resolved and exchange energy terms are neglected in this approach. The influence of microstructure evolution is rather incorporated in an effective manner, which allows the computation of meso- and macroscale problems. This approach necessitates the development and implementation of novel mixed finite element formulations. It further requires the enforcement of inequality constraints at the global level. To handle the latter, we employ Fischer–Burmeister complementarity functions and introduce the associated Lagrange multipliers as additional nodal degrees-of-freedom. As a particular application of this general methodology, a recently established energy-relaxation-based model for magnetic shape memory behaviour is implemented and tested. Special cases—including ellipsoidal specimen geometries—are used to verify the magnetisation and field-induced strain responses obtained from finite element simulations by comparison to calculations based on the demagnetisation factor concept.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)CrossRef Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. Int. J. Numer. Methods Eng. 2, 151–157 (1970)CrossRef
2.
go back to reference Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)MathSciNetCrossRefMATH Arockiarajan, A., Menzel, A., Delibas, B., Seemann, W.: Computational modeling of rate-dependent domain switching in piezoelectric materials. Eur. J. Mech. A Solids 25, 950–964 (2006)MathSciNetCrossRefMATH
3.
go back to reference Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)CrossRef Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)CrossRef
4.
go back to reference Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift für Angewandte Mathematik und Mechanik 89, 792–809 (2009)CrossRefMATH Bartel, T., Hackl, K.: A micromechanical model for martensitic phase-transformations in shape-memory alloys based on energy-relaxation. Zeitschrift für Angewandte Mathematik und Mechanik 89, 792–809 (2009)CrossRefMATH
5.
go back to reference Bartel, T., Menzel, A.: Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach. Int. J. Fract. 202, 281–293 (2016)CrossRef Bartel, T., Menzel, A.: Modelling and simulation of cyclic thermomechanical behaviour of NiTi wires using a weak discontinuity approach. Int. J. Fract. 202, 281–293 (2016)CrossRef
6.
go back to reference Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)MathSciNetCrossRefMATH Bartel, T., Menzel, A., Svendsen, B.: Thermodynamic and relaxation-based modeling of the interaction between martensitic phase transformations and plasticity. J. Mech. Phys. Solids 59(5), 1004–1019 (2011)MathSciNetCrossRefMATH
7.
go back to reference Bartels, A., Mosler, J.: Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Comput. Methods Appl. Mech. Eng. 317, 55–83 (2017)MathSciNetCrossRef Bartels, A., Mosler, J.: Efficient variational constitutive updates for Allen–Cahn-type phase field theory coupled to continuum mechanics. Comput. Methods Appl. Mech. Eng. 317, 55–83 (2017)MathSciNetCrossRef
8.
9.
go back to reference Brown Jr., W.F.: Micromagnetics, Interscience Tracts on Physics and Astronomy, vol. 18. Wiley, New York (1963) Brown Jr., W.F.: Micromagnetics, Interscience Tracts on Physics and Astronomy, vol. 18. Wiley, New York (1963)
10.
go back to reference Brown Jr., W.F.: Magnetoelastic Interactions, Tracts in Natural Philosophy, vol. 9. Springer, New York (1966)CrossRef Brown Jr., W.F.: Magnetoelastic Interactions, Tracts in Natural Philosophy, vol. 9. Springer, New York (1966)CrossRef
11.
go back to reference Bustamante, R., Dorfmann, A., Ogden, R.W.: Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int. J. Solids Struct. 48(6), 874–883 (2011)CrossRefMATH Bustamante, R., Dorfmann, A., Ogden, R.W.: Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int. J. Solids Struct. 48(6), 874–883 (2011)CrossRefMATH
12.
go back to reference Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Sol. Struct. 48, 1120–1129 (2011)CrossRefMATH Canadija, M., Mosler, J.: On the thermomechanical coupling in finite strain plasticity theory with non-linear kinematic hardening by means of incremental energy minimization. Int. J. Sol. Struct. 48, 1120–1129 (2011)CrossRefMATH
13.
go back to reference Chen, X., Moumni, Z., He, Y., Zhang, W.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)MathSciNetCrossRef Chen, X., Moumni, Z., He, Y., Zhang, W.: A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys. J. Mech. Phys. Solids 64, 249–286 (2014)MathSciNetCrossRef
14.
15.
go back to reference DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193(48–51), 5129–5141 (2004)MathSciNetCrossRefMATH DeSimone, A.: Coarse-grained models of materials with non-convex free-energy: two case studies. Comput. Methods Appl. Mech. Eng. 193(48–51), 5129–5141 (2004)MathSciNetCrossRefMATH
17.
go back to reference DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertorti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, Volume II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Chap. 4, pp. 269–381. Elsevier, Amsterdam (2006) DeSimone, A., Kohn, R.V., Müller, S., Otto, F.: Recent analytical developments in micromagnetics. In: Bertorti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, Volume II: Physical Modeling, Micromagnetics, and Magnetization Dynamics, Chap. 4, pp. 269–381. Elsevier, Amsterdam (2006)
18.
go back to reference Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)CrossRef Dusthakar, D.K., Menzel, A., Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials—application to tetragonal barium titanate. Mech. Mater. 117, 235–254 (2018)CrossRef
19.
21.
go back to reference Ge, Y., Heczko, O., Söderberg, O., Lindroos, V.: Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159–2163 (2004)CrossRef Ge, Y., Heczko, O., Söderberg, O., Lindroos, V.: Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. J. Appl. Phys. 96, 2159–2163 (2004)CrossRef
22.
go back to reference Haldar, K., Kiefer, B., Lagoudas, D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Mag. 91(32), 4126–4157 (2011)CrossRef Haldar, K., Kiefer, B., Lagoudas, D.C.: Finite element analysis of the demagnetization effect and stress inhomogeneities in magnetic shape memory alloy samples. Philos. Mag. 91(32), 4126–4157 (2011)CrossRef
23.
go back to reference Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)CrossRef Haldar, K., Kiefer, B., Menzel, A.: Finite element simulation of rate-dependent magneto-active polymer response. Smart Mater. Struct. 25(10), 104003 (2016)CrossRef
24.
go back to reference Heczko, O.: Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291(2), 787–794 (2005)CrossRef Heczko, O.: Magnetic shape memory effect and magnetization reversal. J. Magn. Magn. Mater. 290–291(2), 787–794 (2005)CrossRef
25.
go back to reference Heczko, O., Straka, L., Ullakko, K.: Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. Phys. IV 112, 959–962 (2003) Heczko, O., Straka, L., Ullakko, K.: Relation between structure, magnetization process and magnetic shape memory effect of various martensites occurring in Ni–Mn–Ga alloys. J. Phys. IV 112, 959–962 (2003)
26.
go back to reference Hwang, C.S., McMeeking, M.R.: A finite element model of ferroelastic polycrystals. Ferroelectrics 211, 177–194 (1998)CrossRefMATH Hwang, C.S., McMeeking, M.R.: A finite element model of ferroelastic polycrystals. Ferroelectrics 211, 177–194 (1998)CrossRefMATH
27.
go back to reference James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\rm Tb_xDy_{1-x}Fr_2\). Philos. Mag. B 68(2), 237–274 (1993)CrossRef James, R.D., Kinderlehrer, D.: Theory of magnetostriction with applications to \(\rm Tb_xDy_{1-x}Fr_2\). Philos. Mag. B 68(2), 237–274 (1993)CrossRef
28.
go back to reference Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)CrossRef Javili, A., Chatzigeorgiou, G., Steinmann, P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)CrossRef
29.
go back to reference Kaliappan, J., Menzel, A.: Modelling of non-linear switching effects in piezoceramics: a three-dimensional polygonal finite-element-based approach applied to oligo-crystals. J. Intell. Mater. Syst. Struct. 26(17), 2322–2337 (2015)CrossRef Kaliappan, J., Menzel, A.: Modelling of non-linear switching effects in piezoceramics: a three-dimensional polygonal finite-element-based approach applied to oligo-crystals. J. Intell. Mater. Syst. Struct. 26(17), 2322–2337 (2015)CrossRef
30.
go back to reference Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)CrossRefMATH Kamlah, M., Böhle, U.: Finite element analysis of piezoceramic components taking into account ferroelectric hysteresis behavior. Int. J. Solids Struct. 38, 605–633 (2001)CrossRefMATH
31.
go back to reference Kazaryan, A., Wang, Y., Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Wang, L., Laughlin, D.E.: Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure. J. Appl. Phys. 92(12), 7408–7414 (2002)CrossRef Kazaryan, A., Wang, Y., Jin, Y.M., Wang, Y.U., Khachaturyan, A.G., Wang, L., Laughlin, D.E.: Development of magnetic domains in hard ferromagnetic thin films of polytwinned microstructure. J. Appl. Phys. 92(12), 7408–7414 (2002)CrossRef
32.
go back to reference Kiefer, B.: A phenomenological constitutive model for magnetic shape memory alloys. Ph.D. dissertation, Department of Aerospace Engineering, Texas A&M University, College Station, TX (2006) Kiefer, B.: A phenomenological constitutive model for magnetic shape memory alloys. Ph.D. dissertation, Department of Aerospace Engineering, Texas A&M University, College Station, TX (2006)
33.
go back to reference Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)CrossRef Kiefer, B., Bartel, T., Menzel, A.: Implementation of numerical integration schemes for the simulation of magnetic sma constitutive response. Smart Mater. Struct. 21(9), 094007 (2012)CrossRef
34.
go back to reference Kiefer, B., Buckmann, K., Bartel, T.: Numerical energy relaxation to model microstructure evolution in functional magnetic materials. GAMM Mitt. 38(1), 171–196 (2015)MathSciNetCrossRef Kiefer, B., Buckmann, K., Bartel, T.: Numerical energy relaxation to model microstructure evolution in functional magnetic materials. GAMM Mitt. 38(1), 171–196 (2015)MathSciNetCrossRef
35.
go back to reference Kiefer, B., Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. Spec. Issue Recent Adv. Theor. Mech. 85(33–35), 4289–4329 (2005) Kiefer, B., Lagoudas, D.C.: Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys. Philos. Mag. Spec. Issue Recent Adv. Theor. Mech. 85(33–35), 4289–4329 (2005)
36.
go back to reference Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intelli. Mater. Syst. Struct. 20(2), 143–170 (2009)CrossRef Kiefer, B., Lagoudas, D.C.: Modeling the coupled strain and magnetization response of magnetic shape memory alloys under magnetomechanical loading. J. Intelli. Mater. Syst. Struct. 20(2), 143–170 (2009)CrossRef
37.
go back to reference Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)MATH Kittel, C.: Introduction to Solid State Physics, 7th edn. Wiley, New York (1996)MATH
38.
go back to reference Landis, C.M.: A new finite element formulation for electromechanical boundary value problems. Int. J. Numer. Methods Eng. 55(5), 613–628 (2002)CrossRefMATH Landis, C.M.: A new finite element formulation for electromechanical boundary value problems. Int. J. Numer. Methods Eng. 55(5), 613–628 (2002)CrossRefMATH
39.
go back to reference Linnemann, K., Klinkel, S., Wagner, W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)CrossRefMATH Linnemann, K., Klinkel, S., Wagner, W.: A constitutive model for magnetostrictive and piezoelectric materials. Int. J. Solids Struct. 46, 1149–1166 (2009)CrossRefMATH
40.
go back to reference Menzel, A., Denzer, R., Steinmann, P.: On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal–plasticity. Comput. Methods Appl. Mech. Eng. 193(48–51), 5411–5428 (2004)MathSciNetCrossRefMATH Menzel, A., Denzer, R., Steinmann, P.: On the comparison of two approaches to compute material forces for inelastic materials. Application to single-slip crystal–plasticity. Comput. Methods Appl. Mech. Eng. 193(48–51), 5411–5428 (2004)MathSciNetCrossRefMATH
41.
go back to reference Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)MathSciNetCrossRefMATH Miehe, C.: Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int. J. Numer. Methods Eng. 55(11), 1285–1322 (2002)MathSciNetCrossRefMATH
42.
go back to reference Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012)MathSciNetCrossRefMATH Miehe, C., Ethiraj, G.: A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput. Methods Appl. Mech. Eng. 245–246, 331–347 (2012)MathSciNetCrossRefMATH
43.
go back to reference Miehe, C., Kiefer, B., Rosato, D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)CrossRef Miehe, C., Kiefer, B., Rosato, D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)CrossRef
44.
go back to reference Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)MathSciNetCrossRefMATH Miehe, C., Rosato, D., Kiefer, B.: Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int. J. Numer. Methods Eng. 86(10), 1225–1276 (2011)MathSciNetCrossRefMATH
45.
go back to reference O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000) O’Handley, R.C.: Modern Magnetic Materials. Wiley, New York (2000)
46.
go back to reference Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)MathSciNetCrossRefMATH Ortiz, M., Stainier, L.: The variational formulation of viscoplastic constitutive updates. Comput. Methods Appl. Mech. Eng. 171, 419–444 (1999)MathSciNetCrossRefMATH
47.
go back to reference Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192, 1261–1280 (2003)CrossRefMATH Schmidt-Baldassari, M.: Numerical concepts for rate-independent single crystal plasticity. Comput. Methods Appl. Mech. Eng. 192, 1261–1280 (2003)CrossRefMATH
48.
go back to reference Schrefl, T.: Finite elements in numerical micromagnetics part I: granular hard magnets. J. Magn. Magn. Mater. 207, 45–65 (1999)CrossRef Schrefl, T.: Finite elements in numerical micromagnetics part I: granular hard magnets. J. Magn. Magn. Mater. 207, 45–65 (1999)CrossRef
49.
go back to reference Schrefl, T.: Finite elements in numerical micromagnetics part II: patterned magnetic elements. J. Magn. Magn. Mater. 207, 66–77 (1999)CrossRef Schrefl, T.: Finite elements in numerical micromagnetics part II: patterned magnetic elements. J. Magn. Magn. Mater. 207, 66–77 (1999)CrossRef
50.
go back to reference Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)CrossRefMATH Schröder, J., Romanowski, H.: A thermodynamically consistent mesoscopic model for transversely isotropic ferroelectric ceramics in a coordinate-invariant setting. Arch. Appl. Mech. 74, 863–877 (2005)CrossRefMATH
51.
go back to reference Straka, L., Heczko, O.: Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J. Magn. Magn. Mater. 290–291(2), 829–831 (2005)CrossRef Straka, L., Heczko, O.: Reversible 6% strain of Ni–Mn–Ga martensite using opposing external stress in static and variable magnetic fields. J. Magn. Magn. Mater. 290–291(2), 829–831 (2005)CrossRef
52.
go back to reference Straka, L., Heczko, O., Novak, V., Lanska, N.: Study of austenite–martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. Phys. IV 112, 911–915 (2003) Straka, L., Heczko, O., Novak, V., Lanska, N.: Study of austenite–martensite transformation in Ni–Mn–Ga magnetic shape memory alloy. J. Phys. IV 112, 911–915 (2003)
53.
go back to reference Thylander, S., Menzel, A., Ristinmaa, M.: A non-affine electro-viscoelastic micro-sphere model for dielectric elastomers: application to VHB 4910 based actuators. J. Intell. Mater. Syst. Struct. 28(5), 627–639 (2017)CrossRef Thylander, S., Menzel, A., Ristinmaa, M.: A non-affine electro-viscoelastic micro-sphere model for dielectric elastomers: application to VHB 4910 based actuators. J. Intell. Mater. Syst. Struct. 28(5), 627–639 (2017)CrossRef
54.
go back to reference Tickle, R.: Ferromagnetic shape memory materials. Ph.D. dissertation, University of Minnesota (2000) Tickle, R.: Ferromagnetic shape memory materials. Ph.D. dissertation, University of Minnesota (2000)
55.
go back to reference Tickle, R., James, R.D.: Magnetic and magnetomechanical properties of Ni\(_2\)MnGa. J. Magn. Magn. Mater. 195(3), 627–638 (1999)CrossRef Tickle, R., James, R.D.: Magnetic and magnetomechanical properties of Ni\(_2\)MnGa. J. Magn. Magn. Mater. 195(3), 627–638 (1999)CrossRef
56.
go back to reference Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Contin. Mech. Thermodyn. 28(3), 669–698 (2016)MathSciNetCrossRefMATH Wang, J., Steinmann, P.: On the modeling of equilibrium twin interfaces in a single-crystalline magnetic shape memory alloy sample. II: numerical algorithm. Contin. Mech. Thermodyn. 28(3), 669–698 (2016)MathSciNetCrossRefMATH
57.
go back to reference Ziegler, H.: Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. No. IV in Progress in Solid Mechanics. North-Holland, Amsterdam (1963) Ziegler, H.: Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. No. IV in Progress in Solid Mechanics. North-Holland, Amsterdam (1963)
Metadata
Title
Simulation of magnetised microstructure evolution based on a micromagnetics-inspired FE framework: application to magnetic shape memory behaviour
Authors
Karsten Buckmann
Björn Kiefer
Thorsten Bartel
Andreas Menzel
Publication date
31-10-2018
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 6/2019
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-1482-7

Other articles of this Issue 6/2019

Archive of Applied Mechanics 6/2019 Go to the issue

Premium Partners