Skip to main content
Top
Published in: Cognitive Neurodynamics 6/2018

07-07-2018 | Research Article

Simulation of retinal ganglion cell response using fast independent component analysis

Authors: Guanzheng Wang, Rubin Wang, Wanzheng Kong, Jianhai Zhang

Published in: Cognitive Neurodynamics | Issue 6/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves–Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional “burst” of neuronal population transmits information efficiently.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network 22(1–4):4–44 Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network 22(1–4):4–44
go back to reference Bakouie F, Pishnamazi M, Zeraati R, Gharibzadeh S (2017) Scale-freeness of dominant and piecemeal perceptions during binocular rivalry. Cogn Neurodyn 11(4):319–326CrossRef Bakouie F, Pishnamazi M, Zeraati R, Gharibzadeh S (2017) Scale-freeness of dominant and piecemeal perceptions during binocular rivalry. Cogn Neurodyn 11(4):319–326CrossRef
go back to reference Barlow HB (1961) Possible principles underlying the transformation of sensory messages. MIT Press, Cambridge, pp 217–234 Barlow HB (1961) Possible principles underlying the transformation of sensory messages. MIT Press, Cambridge, pp 217–234
go back to reference Barranca VJ, Kovacic G, Zhou D et al (2014) Sparsity and compressed coding in sensory systems. PLoS Comput Biol 10(8):e1003793CrossRef Barranca VJ, Kovacic G, Zhou D et al (2014) Sparsity and compressed coding in sensory systems. PLoS Comput Biol 10(8):e1003793CrossRef
go back to reference Bartsch U, Oriyakhel W, Kenna PF, Linke S, Richard G, Petrowitz B, Humphries P, Farrar GJ, Ader M (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86(4):691–700CrossRef Bartsch U, Oriyakhel W, Kenna PF, Linke S, Richard G, Petrowitz B, Humphries P, Farrar GJ, Ader M (2008) Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res 86(4):691–700CrossRef
go back to reference Felsen G, Dan Y (2005) A natural approach to studying vision. Nat Neurosci 8(12):1643CrossRef Felsen G, Dan Y (2005) A natural approach to studying vision. Nat Neurosci 8(12):1643CrossRef
go back to reference Felsen G, Touryan J, Han F et al (2005) Cortical sensitivity to visual features in natural scenes. PLoS Biol 3(10):e342CrossRef Felsen G, Touryan J, Han F et al (2005) Cortical sensitivity to visual features in natural scenes. PLoS Biol 3(10):e342CrossRef
go back to reference Field DJ (1994) What is the goal of sensory coding? Neural Comput 6(4):559–601CrossRef Field DJ (1994) What is the goal of sensory coding? Neural Comput 6(4):559–601CrossRef
go back to reference Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72CrossRef Gravier A, Quek C, Duch W, Wahab A, Gravier-Rymaszewska J (2016) Neural network modelling of the influence of channelopathies on reflex visual attention. Cogn Neurodyn 10(1):49–72CrossRef
go back to reference Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4(5):455CrossRef Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4(5):455CrossRef
go back to reference Hadjinicolaou AE, Cloherty SL, Kameneva T et al (2016) Frequency responses of rat RGCs. PLoS ONE 11(6):e0157676CrossRef Hadjinicolaou AE, Cloherty SL, Kameneva T et al (2016) Frequency responses of rat RGCs. PLoS ONE 11(6):e0157676CrossRef
go back to reference Hasenstaub A, Otte S, Callaway E et al (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci USA 107(27):12329CrossRef Hasenstaub A, Otte S, Callaway E et al (2010) Metabolic cost as a unifying principle governing neuronal biophysics. Proc Natl Acad Sci USA 107(27):12329CrossRef
go back to reference Hoyer PO, Hyvarinen A (2000) Independent component analysis applied to feature extraction from colour and stereo images. Netw Comput Neural Syst 11(3):191–210CrossRef Hoyer PO, Hyvarinen A (2000) Independent component analysis applied to feature extraction from colour and stereo images. Netw Comput Neural Syst 11(3):191–210CrossRef
go back to reference Hubel DH, Wiesel TN (1997) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59CrossRef Hubel DH, Wiesel TN (1997) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B 198:1–59CrossRef
go back to reference Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509CrossRef Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509CrossRef
go back to reference Hyvarinen A (1999) Survey on independent component analysis. Neural Comput Surv 2(4):94–128 Hyvarinen A (1999) Survey on independent component analysis. Neural Comput Surv 2(4):94–128
go back to reference Hyvärinen A (1999) Fast independent component analysis with noisy data using Gaussian moments. Proc Int Symp Circuits Syst 5:V57–V61 Hyvärinen A (1999) Fast independent component analysis with noisy data using Gaussian moments. Proc Int Symp Circuits Syst 5:V57–V61
go back to reference Hyvarinen A, Hoyer PO (2002) A two-layer sparse coding model learn simple and complex cell receptive fields and topography from natural images. Vis Res 41(18):2413–2423CrossRef Hyvarinen A, Hoyer PO (2002) A two-layer sparse coding model learn simple and complex cell receptive fields and topography from natural images. Vis Res 41(18):2413–2423CrossRef
go back to reference Hyvarinen A, Hoyer PO, Mika OI (2001) Topographic independent component analysis. Neural Comput 13(7):1527–1558CrossRef Hyvarinen A, Hoyer PO, Mika OI (2001) Topographic independent component analysis. Neural Comput 13(7):1527–1558CrossRef
go back to reference Jessell Thomas M, Kandel Eric R, Schwartz JH (2000) Principles of neural science, 5th edn. McGraw-Hill, New York, pp 533–540 Jessell Thomas M, Kandel Eric R, Schwartz JH (2000) Principles of neural science, 5th edn. McGraw-Hill, New York, pp 533–540
go back to reference Kameneva T, Maturana MI, Hadjinicolaou AE et al (2016) RGCs: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells. J Neural Eng 13(1):016017CrossRef Kameneva T, Maturana MI, Hadjinicolaou AE et al (2016) RGCs: mechanisms underlying depolarization block and differential responses to high frequency electrical stimulation of ON and OFF cells. J Neural Eng 13(1):016017CrossRef
go back to reference Kandel E, Schwartz J (2013) Principles of neural science, 5th edn. McGraw-Hill, New York Kandel E, Schwartz J (2013) Principles of neural science, 5th edn. McGraw-Hill, New York
go back to reference Khoshbin-e-Khoshnazar MR (2014) Quantum superposition in the retina: evidences and proposals. NeuroQuantology 12(1):97–101CrossRef Khoshbin-e-Khoshnazar MR (2014) Quantum superposition in the retina: evidences and proposals. NeuroQuantology 12(1):97–101CrossRef
go back to reference Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11(4):475–480CrossRef Laughlin SB (2001) Energy as a constraint on the coding and processing of sensory information. Curr Opin Neurobiol 11(4):475–480CrossRef
go back to reference Levy WB, Baxter RA (1999) Energy efficient neural codes Neural codes and distributed representations. MIT Press, Cambridge, pp 531–543 Levy WB, Baxter RA (1999) Energy efficient neural codes Neural codes and distributed representations. MIT Press, Cambridge, pp 531–543
go back to reference Lewick M (2002) Efficient coding of natural sounds. Nat Neurosci 5:356–363CrossRef Lewick M (2002) Efficient coding of natural sounds. Nat Neurosci 5:356–363CrossRef
go back to reference Maturana MI, Kameneva T, Burkitt AN et al (2014) The effect of morphology upon electrophysiological responses of RGCs: simulation results. J Comput Neurosci 36(2):157–175CrossRef Maturana MI, Kameneva T, Burkitt AN et al (2014) The effect of morphology upon electrophysiological responses of RGCs: simulation results. J Comput Neurosci 36(2):157–175CrossRef
go back to reference Maturana MI, Apollo NV, Hadjinicolaou AE et al (2016) A simple and accurate model to predict responses to multi-electrode stimulation in the retina. PLoS Comput Biol 12(4):e1004849CrossRef Maturana MI, Apollo NV, Hadjinicolaou AE et al (2016) A simple and accurate model to predict responses to multi-electrode stimulation in the retina. PLoS Comput Biol 12(4):e1004849CrossRef
go back to reference Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11:135–146CrossRef Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11:135–146CrossRef
go back to reference Momtaz HZ, Daliri MR (2016) Predicting the eye fixation locations in the gray scale images in the visual scenes with different semantic contents. Cogn Neurodyn 10(1):31–47CrossRef Momtaz HZ, Daliri MR (2016) Predicting the eye fixation locations in the gray scale images in the visual scenes with different semantic contents. Cogn Neurodyn 10(1):31–47CrossRef
go back to reference Olshausen BA, Field DJ (1996) Emergence of simple cell receptive properties by learning a sparse code for natural images. Nature 381:607–609CrossRef Olshausen BA, Field DJ (1996) Emergence of simple cell receptive properties by learning a sparse code for natural images. Nature 381:607–609CrossRef
go back to reference Olshausen BA, Field DJ (1997) Sparse coding with an over complete basis set: a strategy employed by V1. Vision Res 37:3313–3325CrossRef Olshausen BA, Field DJ (1997) Sparse coding with an over complete basis set: a strategy employed by V1. Vision Res 37:3313–3325CrossRef
go back to reference Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487CrossRef Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487CrossRef
go back to reference Peters JF, Tozzi A, Ramanna S et al (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(1):1–4CrossRef Peters JF, Tozzi A, Ramanna S et al (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(1):1–4CrossRef
go back to reference Pillow JW, Shlens J, Paninski L, Sher A, Litke AM (2008) Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454:995–999CrossRef Pillow JW, Shlens J, Paninski L, Sher A, Litke AM (2008) Spatio-temporal correlations and visual signaling in a complete neuronal population. Nature 454:995–999CrossRef
go back to reference Protopapa F, Siettos CI, Myatchin I, Lagae L (2016) Children with well controlled epilepsy possess different spatio-temporal patterns of causal network connectivity during a visual working memory task. Cogn Neurodyn 10(2):99–111CrossRef Protopapa F, Siettos CI, Myatchin I, Lagae L (2016) Children with well controlled epilepsy possess different spatio-temporal patterns of causal network connectivity during a visual working memory task. Cogn Neurodyn 10(2):99–111CrossRef
go back to reference Qiu XW, Gong HQ, Zhang PM et al (2016) The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell. Cogn Neurodyn 10(6):481CrossRef Qiu XW, Gong HQ, Zhang PM et al (2016) The oscillation-like activity in bullfrog ON-OFF retinal ganglion cell. Cogn Neurodyn 10(6):481CrossRef
go back to reference Qureshi TA, Hunter A, Al-Diri B (2014) A Bayesian framework for the local configuration of retinal junctions. IEEE Comput Vis Pattern Recogn 167:3105–3110 Qureshi TA, Hunter A, Al-Diri B (2014) A Bayesian framework for the local configuration of retinal junctions. IEEE Comput Vis Pattern Recogn 167:3105–3110
go back to reference Reich LN, Bedell HE (2000) Relative legibility and confusions of letter acuity targets in the peripheral and central retina. Optom Vis Sci Off Publ Am Acad Optom 77(5):270–275CrossRef Reich LN, Bedell HE (2000) Relative legibility and confusions of letter acuity targets in the peripheral and central retina. Optom Vis Sci Off Publ Am Acad Optom 77(5):270–275CrossRef
go back to reference Rieke F, Warland D, van Steveninck RR et al (1997) Spikes: exploring the neural code. MIT, Cambridge Rieke F, Warland D, van Steveninck RR et al (1997) Spikes: exploring the neural code. MIT, Cambridge
go back to reference Simoncelli EP (2003) Vision and the statistics of the visual environment. Curr Opin Neurobiol 1(13):144–149CrossRef Simoncelli EP (2003) Vision and the statistics of the visual environment. Curr Opin Neurobiol 1(13):144–149CrossRef
go back to reference Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216CrossRef Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216CrossRef
go back to reference Theunissen FE, David SV, Singh NC et al (2001) Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12(3):289CrossRef Theunissen FE, David SV, Singh NC et al (2001) Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12(3):289CrossRef
go back to reference Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fields measured with natural images. Neuron 45(5):781CrossRef Touryan J, Felsen G, Dan Y (2005) Spatial structure of complex cell receptive fields measured with natural images. Neuron 45(5):781CrossRef
go back to reference Tozzi A, Peters JF (2017) From abstract topology to real thermodynamic brain activity. Cogn Neurodyn 11(3):283CrossRef Tozzi A, Peters JF (2017) From abstract topology to real thermodynamic brain activity. Cogn Neurodyn 11(3):283CrossRef
go back to reference Treichler DG (1967) Are you missing the boat in training aids? Film Audio-Visual Commun 1:14–16 Treichler DG (1967) Are you missing the boat in training aids? Film Audio-Visual Commun 1:14–16
go back to reference Treves A, Rolls ET (1991) What determines the capacity of auto associative memories in the brain? Network 2:371–397CrossRef Treves A, Rolls ET (1991) What determines the capacity of auto associative memories in the brain? Network 2:371–397CrossRef
go back to reference Urakawa T, Bunya M, Araki O (2017) Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image. Cogn Neurodyn 11(9):1–12 Urakawa T, Bunya M, Araki O (2017) Involvement of the visual change detection process in facilitating perceptual alternation in the bistable image. Cogn Neurodyn 11(9):1–12
go back to reference Vinje W, Gallant J (2002) Natural stimulation of the non-classical receptive field increases information transmission efficiency in V1. J Neurosci 22:2904–2915CrossRef Vinje W, Gallant J (2002) Natural stimulation of the non-classical receptive field increases information transmission efficiency in V1. J Neurosci 22:2904–2915CrossRef
go back to reference Wang G, Wang R (2017) Sparse coding network model based on fast independent component analysis. Neural Comput Appl 13:1–7 Wang G, Wang R (2017) Sparse coding network model based on fast independent component analysis. Neural Comput Appl 13:1–7
go back to reference Wang RB, Zhu YT (2016) Can the activities of the large scale cortical network be expressed by neural energy? Cogn Neurodyn 10(1):1–5CrossRef Wang RB, Zhu YT (2016) Can the activities of the large scale cortical network be expressed by neural energy? Cogn Neurodyn 10(1):1–5CrossRef
go back to reference Wang YH, Wang RB, Zhu YT (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111CrossRef Wang YH, Wang RB, Zhu YT (2017) Optimal path-finding through mental exploration based on neural energy field gradients. Cogn Neurodyn 11(1):99–111CrossRef
go back to reference Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Network. 12(3):255–270CrossRef Willmore B, Tolhurst DJ (2001) Characterizing the sparseness of neural codes. Network. 12(3):255–270CrossRef
go back to reference Wohrer A, Kornprobst P (2009) Virtual Retina: a biological retina model and simulator, with contrast gain control. J Comput Neurosci 26(2):219–249CrossRef Wohrer A, Kornprobst P (2009) Virtual Retina: a biological retina model and simulator, with contrast gain control. J Comput Neurosci 26(2):219–249CrossRef
go back to reference Yan RJ, Gong HQ, Zhang PM, He SG, Liang PJ (2016) Temporal properties of dual-peak responses of mouse RGCs and effects of inhibitory pathways. Cogn Neurodyn 10(3):211–223CrossRef Yan RJ, Gong HQ, Zhang PM, He SG, Liang PJ (2016) Temporal properties of dual-peak responses of mouse RGCs and effects of inhibitory pathways. Cogn Neurodyn 10(3):211–223CrossRef
go back to reference Zhang YY, Jin X, Gong HQ, Liang PJ (2010) Temporal and spatial patterns of retinal ganglion cells in response to natural stimuli. Prog Biochem Biophys 37(4):389–396CrossRef Zhang YY, Jin X, Gong HQ, Liang PJ (2010) Temporal and spatial patterns of retinal ganglion cells in response to natural stimuli. Prog Biochem Biophys 37(4):389–396CrossRef
go back to reference Zheng HW, Wang RB, Qu JY (2016) Effect of different glucose supply conditions on neuronal energy metabolism. Cogn Neurodyn 10(6):1–9CrossRef Zheng HW, Wang RB, Qu JY (2016) Effect of different glucose supply conditions on neuronal energy metabolism. Cogn Neurodyn 10(6):1–9CrossRef
Metadata
Title
Simulation of retinal ganglion cell response using fast independent component analysis
Authors
Guanzheng Wang
Rubin Wang
Wanzheng Kong
Jianhai Zhang
Publication date
07-07-2018
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 6/2018
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-018-9490-4

Other articles of this Issue 6/2018

Cognitive Neurodynamics 6/2018 Go to the issue