Skip to main content
Top
Published in: Colloid and Polymer Science 5/2018

25-03-2018 | Original Contribution

Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation

Authors: Zhinan Fu, Li Li, Mingwei Wang, Xuhong Guo

Published in: Colloid and Polymer Science | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flash nanoprecipitation (FNP) is an ideal method to rapidly prepare nanosized drug particles with high drug-loading efficiency, where amphiphilic block copolymers are used as stabilizer to protect the nanoparticles from aggregation. In this paper, stable β-carotene-loaded nanoparticles with tunable size, narrow size distribution, and high drug-loading efficiency (> 86%) were prepared by carefully controlling the input drug concentration. The size and size distribution of the prepared nanoparticles kept almost unchanged for more than half a month. It is found that the input drug concentration during FNP showed significant impact on the stability of nanoparticles. By increasing the stream velocity, Reynolds number or the molecular weight of amphiphilic block copolymer, the size of nanoparticle can be reduced, while the nanoparticle size increased upon reducing the hydrophilic block proportion of amphiphilic block copolymer. This work should be very helpful to control the preparation of stable nanoparticles by FNP.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z (2015) Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 210:125–133CrossRef Chen W, Meng F, Cheng R, Deng C, Feijen J, Zhong Z (2015) Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. J Control Release 210:125–133CrossRef
2.
go back to reference Chen M, Yao J, Shao Z, Chen X (2011) Biomacromolecule-based nanoparticle drug carriers. Prog Chem 23(1):202–212 Chen M, Yao J, Shao Z, Chen X (2011) Biomacromolecule-based nanoparticle drug carriers. Prog Chem 23(1):202–212
3.
go back to reference Lu L, Shao X, Jiao Y, Zhou C (2015) Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanopaticles. J Appl Polym Sci 131(21):41034 Lu L, Shao X, Jiao Y, Zhou C (2015) Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanopaticles. J Appl Polym Sci 131(21):41034
4.
go back to reference Siddiquee S, Yusof NA, Salleh AB, Tan SG, Bakar FA (2011) Electrochemical DNA biosensor for the detection of Trichoderma harzianum, based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator. Microchim Acta 172(3–4):357–363CrossRef Siddiquee S, Yusof NA, Salleh AB, Tan SG, Bakar FA (2011) Electrochemical DNA biosensor for the detection of Trichoderma harzianum, based on a gold electrode modified with a composite membrane made from an ionic liquid, ZnO nanoparticles and chitosan, and by using acridine orange as a redox indicator. Microchim Acta 172(3–4):357–363CrossRef
5.
go back to reference Gindy ME, Prud’Homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Delivery 6(8):865–878CrossRef Gindy ME, Prud’Homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Delivery 6(8):865–878CrossRef
6.
go back to reference Rosler A, Vandermeulen GW, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108CrossRef Rosler A, Vandermeulen GW, Klok HA (2001) Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev 53(1):95–108CrossRef
7.
go back to reference Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158CrossRef Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158CrossRef
8.
go back to reference Bai Z, Lodge TP (2009) Thermodynamics and mechanism of the block copolymer micelle shuttle between water and an ionic liquid. J Phys Chem B 113(43):14151–14157CrossRef Bai Z, Lodge TP (2009) Thermodynamics and mechanism of the block copolymer micelle shuttle between water and an ionic liquid. J Phys Chem B 113(43):14151–14157CrossRef
9.
go back to reference Wang M, Xu Y, Wang J, Liu M, Yuan Z, Chen K, Li L, Prud’Homme RK, Guo X (2015) Biocompatible nanoparticle based on dextran-b-poly(L-lactide) block copolymer formed by flash nanoprecipitation. Chem Lett 44(12):1688–1690CrossRef Wang M, Xu Y, Wang J, Liu M, Yuan Z, Chen K, Li L, Prud’Homme RK, Guo X (2015) Biocompatible nanoparticle based on dextran-b-poly(L-lactide) block copolymer formed by flash nanoprecipitation. Chem Lett 44(12):1688–1690CrossRef
10.
go back to reference Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’Homme RK, Guo X (2015) Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation. Ind Eng Chem Res 54(17):4683–4688CrossRef Wang M, Yang N, Guo Z, Gu K, Shao A, Zhu W, Xu Y, Wang J, Prud’Homme RK, Guo X (2015) Facile preparation of AIE-active fluorescent nanoparticles through flash nanoprecipitation. Ind Eng Chem Res 54(17):4683–4688CrossRef
11.
go back to reference Akbulut M, Ginart P, Gindy ME, Theriault C, Chin KH, Soboyejo W (2010) Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation. Adv Funct Mater 19(5):718–725CrossRef Akbulut M, Ginart P, Gindy ME, Theriault C, Chin KH, Soboyejo W (2010) Generic method of preparing multifunctional fluorescent nanoparticles using flash nanoprecipitation. Adv Funct Mater 19(5):718–725CrossRef
12.
go back to reference Zhu Z (2014) Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm 11(3):776–786CrossRef Zhu Z (2014) Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Mol Pharm 11(3):776–786CrossRef
13.
go back to reference Zhu Z, Margulis-Goshen K, Magdassi S, Talmon Y, Macosko CW (2010) Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with β-carotene. J Pharm Sci 99(10):4295–4306CrossRef Zhu Z, Margulis-Goshen K, Magdassi S, Talmon Y, Macosko CW (2010) Polyelectrolyte stabilized drug nanoparticles via flash nanoprecipitation: a model study with β-carotene. J Pharm Sci 99(10):4295–4306CrossRef
14.
go back to reference Zhu Z (2013) Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability. Biomaterials 34(38):10238–10248CrossRef Zhu Z (2013) Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability. Biomaterials 34(38):10238–10248CrossRef
15.
go back to reference Liu Y, Tong Z, Prud’Homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64(8):808–812CrossRef Liu Y, Tong Z, Prud’Homme RK (2008) Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Manag Sci 64(8):808–812CrossRef
16.
go back to reference He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, Leong KW, Chen Y, Mao HQ (2017) Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 130:28–41CrossRef He Z, Santos JL, Tian H, Huang H, Hu Y, Liu L, Leong KW, Chen Y, Mao HQ (2017) Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials 130:28–41CrossRef
17.
go back to reference York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’Homme RK, Moghe PV (2012) Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. Adv Mater 24(6):733–739CrossRef York AW, Zablocki KR, Lewis DR, Gu L, Uhrich KE, Prud’Homme RK, Moghe PV (2012) Kinetically assembled nanoparticles of bioactive macromolecules exhibit enhanced stability and cell-targeted biological efficacy. Adv Mater 24(6):733–739CrossRef
18.
go back to reference Pustulka KM, Wohl AR, Lee HS, Michel AR, Han J, Hoye TR, McCormick AV, Panyam J, Macosko CW (2013) Flash nanoprecipitation: particle structure and stability. Mol Pharm 10(11):4367–4377CrossRef Pustulka KM, Wohl AR, Lee HS, Michel AR, Han J, Hoye TR, McCormick AV, Panyam J, Macosko CW (2013) Flash nanoprecipitation: particle structure and stability. Mol Pharm 10(11):4367–4377CrossRef
19.
go back to reference Patil YB, Toti US, Khdair A, Ma L, Panyam (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866CrossRef Patil YB, Toti US, Khdair A, Ma L, Panyam (2009) Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials 30(5):859–866CrossRef
20.
go back to reference Lee VE, Sosa C, Rui L, Prud’Homme RK, Priestley RD (2017) Scalable platform for structured and hybrid soft nanocolloids by continuous precipitation in a confined environment. Langmuir 33(14):3444–3449CrossRef Lee VE, Sosa C, Rui L, Prud’Homme RK, Priestley RD (2017) Scalable platform for structured and hybrid soft nanocolloids by continuous precipitation in a confined environment. Langmuir 33(14):3444–3449CrossRef
21.
go back to reference Pinkerton NM, Behar L, Hadri K, Amouroux B, Mingotaud C, Talham DR, Chassaing S, Marty JD (2016) Ionic flash nanoprecipitation (iFNP) for the facile, one-step synthesis of inorganic-organic hybrid nanoparticles in water. Nano 9(4):1403–1408 Pinkerton NM, Behar L, Hadri K, Amouroux B, Mingotaud C, Talham DR, Chassaing S, Marty JD (2016) Ionic flash nanoprecipitation (iFNP) for the facile, one-step synthesis of inorganic-organic hybrid nanoparticles in water. Nano 9(4):1403–1408
22.
go back to reference Johnson BK, Prud’Homme RK (2003) Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 91(11):118302CrossRef Johnson BK, Prud’Homme RK (2003) Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 91(11):118302CrossRef
23.
go back to reference Saad WS, Prud’Homme RK (2016) Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 11(2):212–227CrossRef Saad WS, Prud’Homme RK (2016) Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 11(2):212–227CrossRef
24.
go back to reference Liu Y, Cheng C, Liu Y, Prud’Homme RK, Fox RO (2008) Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 63(11):2829–2842CrossRef Liu Y, Cheng C, Liu Y, Prud’Homme RK, Fox RO (2008) Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci 63(11):2829–2842CrossRef
25.
go back to reference Russ R, Liu Y, Prud’homme RK (2010) Optimized descriptive model for micromixing in a vortex mixer. Chem Eng Commun 197(8):1068–1075CrossRef Russ R, Liu Y, Prud’homme RK (2010) Optimized descriptive model for micromixing in a vortex mixer. Chem Eng Commun 197(8):1068–1075CrossRef
26.
go back to reference Shen H, Hong S, Prud’Homme RK, Liu Y (2011) Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanopart Res 13(9):4109–4120CrossRef Shen H, Hong S, Prud’Homme RK, Liu Y (2011) Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanopart Res 13(9):4109–4120CrossRef
27.
go back to reference Liu Y, Kathan K, Saad W, Prud’Homme RK (2007) Ostwald ripening of β-carotene nanoparticles. Phys Rev Lett 98(3):036102CrossRef Liu Y, Kathan K, Saad W, Prud’Homme RK (2007) Ostwald ripening of β-carotene nanoparticles. Phys Rev Lett 98(3):036102CrossRef
Metadata
Title
Size control of drug nanoparticles stabilized by mPEG-b-PCL during flash nanoprecipitation
Authors
Zhinan Fu
Li Li
Mingwei Wang
Xuhong Guo
Publication date
25-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 5/2018
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-018-4311-1

Other articles of this Issue 5/2018

Colloid and Polymer Science 5/2018 Go to the issue

Premium Partners