Skip to main content
Top

03-04-2024 | Original

Size-dependent thermoelastic damping analysis in functionally graded bi-layered microbeam resonators considering the nonlocal dual-phase-lag heat conduction model

Authors: Wei Peng, Baocai Pan

Published in: Archive of Applied Mechanics

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Functionally graded (FG) bi-layer structures have become one of the most promising candidates for micro-devices, which are widely used as high-efficient micro-resonators due to their excellent thermo-mechanical properties. In addition, the design of high performance micro-resonators requires sufficiently accurate analysis of their thermoelastic damping (TED). Nevertheless, the classical analysis model of TED fail on the micro-structures owing to without considering the influences of the spatial size-dependent effects related to heat transfer and elastic deformation. To address this issue, present study focuses on investigating the size-dependent TED model of FG bi-layered microbeam resonators for TED analysis by combining the nonlocal dual-phase-lag heat conduction model and the modified coupled stress theory. It is assumed that the FG bi-layered microbeam resonators consist of double FG surfaces. The corresponding governing equation are formulated, and the analytical solution is solved by complex frequency method. The obtained TED model is theoretically verified, and then, the parameter effects of the nonlocal thermal parameter, the material length scale parameter, the power-law index and the vibration modes on the TED are analyzed. This article provides a theoretical analysis model of the TED in FG bi-layered microbeam resonators, which has practical significance in the design of high quality factor devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He, K., Hoa, S.V., Ganesan, R.: The study of tapered laminated composite structures: a review. Compos. Sci Tech. 60(14), 2643–2657 (2000)CrossRef He, K., Hoa, S.V., Ganesan, R.: The study of tapered laminated composite structures: a review. Compos. Sci Tech. 60(14), 2643–2657 (2000)CrossRef
2.
go back to reference Koizumi, M.: The concept of FGM. Ceram. Trans. 34, 3–10 (1993) Koizumi, M.: The concept of FGM. Ceram. Trans. 34, 3–10 (1993)
3.
go back to reference Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014)CrossRef Jung, W.Y., Park, W.T., Han, S.C.: Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. Int. J. Mech. Sci. 87, 150–162 (2014)CrossRef
4.
go back to reference Jung, W.Y., Han, S.C., Park, W.T.: A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos. Part B-Eng. 60, 746–756 (2014)CrossRef Jung, W.Y., Han, S.C., Park, W.T.: A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos. Part B-Eng. 60, 746–756 (2014)CrossRef
5.
go back to reference Ebrahimi, F., Barati, M.R.: Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory. Arab. J. Sci. Eng. 42, 1715–1726 (2017)MathSciNetCrossRef Ebrahimi, F., Barati, M.R.: Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory. Arab. J. Sci. Eng. 42, 1715–1726 (2017)MathSciNetCrossRef
6.
go back to reference Zhong, Z.Y., Zhou, J.P., Zhang, H.L., Zhang, W.M., Guang, M.: Thermoelastic damping in fluid-conveying microresonators. Int. J. Heat Mass Tran. 93, 431–440 (2016)CrossRef Zhong, Z.Y., Zhou, J.P., Zhang, H.L., Zhang, W.M., Guang, M.: Thermoelastic damping in fluid-conveying microresonators. Int. J. Heat Mass Tran. 93, 431–440 (2016)CrossRef
7.
go back to reference Zener, C.: Internal friction in solids II: general theory of thermoelastic internal friction. Phys. Rev. 53(1), 90–99 (1938)CrossRef Zener, C.: Internal friction in solids II: general theory of thermoelastic internal friction. Phys. Rev. 53(1), 90–99 (1938)CrossRef
8.
go back to reference Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nano-mechanical systems. Phys. Rev. B 61, 5600–5609 (2000)CrossRef Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nano-mechanical systems. Phys. Rev. B 61, 5600–5609 (2000)CrossRef
9.
go back to reference Prabhakar, S., Paidoussis, M.P., Vengallatore, S.: Analysis of frequency shifts due to thermoelastic coupling in fexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323(1–2), 385–396 (2009)CrossRef Prabhakar, S., Paidoussis, M.P., Vengallatore, S.: Analysis of frequency shifts due to thermoelastic coupling in fexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323(1–2), 385–396 (2009)CrossRef
10.
go back to reference Sun, Y.X., Saka, M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329(3), 328–337 (2010)CrossRef Sun, Y.X., Saka, M.: Thermoelastic damping in micro-scale circular plate resonators. J. Sound Vib. 329(3), 328–337 (2010)CrossRef
11.
go back to reference Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14(12), 1711–1717 (2004)CrossRef Nayfeh, A.H., Younis, M.I.: Modeling and simulations of thermoelastic damping in microplates. J. Micromech. Microeng. 14(12), 1711–1717 (2004)CrossRef
12.
go back to reference Peshkov, V.: Second sound in helium. J. Phys. 8, 381–386 (1944) Peshkov, V.: Second sound in helium. J. Phys. 8, 381–386 (1944)
13.
go back to reference Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Cr. Phys. 247, 431–433 (1958) Cattaneo, C.: A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Cr. Phys. 247, 431–433 (1958)
14.
go back to reference Vernotte, P.M., Hebd, C.R.: Paradoxes in the continuous theory of the heat conduction. C. R. Acad Sci Paris. 246, 3154–3155 (1958)MathSciNet Vernotte, P.M., Hebd, C.R.: Paradoxes in the continuous theory of the heat conduction. C. R. Acad Sci Paris. 246, 3154–3155 (1958)MathSciNet
15.
go back to reference Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon boltzmann equation. Phys. Rev. 148, 766–778 (1966)CrossRef
16.
go back to reference Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)CrossRef Tzou, D.Y.: The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)CrossRef
17.
go back to reference Tzou, D.Y.: A unified approach for heat-conduction from macro-scales to micro-scales. J. Heat Trans-T ASME. 117(1), 8–16 (1995)CrossRef Tzou, D.Y.: A unified approach for heat-conduction from macro-scales to micro-scales. J. Heat Trans-T ASME. 117(1), 8–16 (1995)CrossRef
18.
go back to reference Zhou, H.Y., Jiang, H.B., Li, P., Xue, H.T., Bo, B.: Thermoelastic damping in the sizedependent micro/nanobeam resonator with nonlocal dual-phase-lag heat conduction. Thin-Walled Struct. 169, 108437 (2021)CrossRef Zhou, H.Y., Jiang, H.B., Li, P., Xue, H.T., Bo, B.: Thermoelastic damping in the sizedependent micro/nanobeam resonator with nonlocal dual-phase-lag heat conduction. Thin-Walled Struct. 169, 108437 (2021)CrossRef
19.
go back to reference Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRef Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)CrossRef
20.
go back to reference Li, S.R., Xu, X., Chen, S.: Analysis of thermoelastic damping of functionally graded material beam resonators. Compos. Struct. 182, 728–736 (2017)CrossRef Li, S.R., Xu, X., Chen, S.: Analysis of thermoelastic damping of functionally graded material beam resonators. Compos. Struct. 182, 728–736 (2017)CrossRef
21.
go back to reference Li, S.R., Ma, H.K.: Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping. Arch. Appl. Mech. 90(6), 1285–1304 (2020)CrossRef Li, S.R., Ma, H.K.: Analysis of free vibration of functionally graded material micro-plates with thermoelastic damping. Arch. Appl. Mech. 90(6), 1285–1304 (2020)CrossRef
22.
go back to reference Azizi, S., Ghazavi, M.R., Rezazadeh, G.: Thermoelastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11(4), 357–369 (2015)CrossRef Azizi, S., Ghazavi, M.R., Rezazadeh, G.: Thermoelastic damping in a functionally graded piezoelectric micro-resonator. Int. J. Mech. Mater. Des. 11(4), 357–369 (2015)CrossRef
23.
go back to reference Khalil, K.M., Abouelregal, A.E., Atta, D.: A new fractional viscoelastic model for an infinitely thermoelastic body with a spherical cavity including Caputo-Fabrizio operator without singular kernel. Chinese. J. Phys. 77, 1450–1464 (2022)MathSciNetCrossRef Khalil, K.M., Abouelregal, A.E., Atta, D.: A new fractional viscoelastic model for an infinitely thermoelastic body with a spherical cavity including Caputo-Fabrizio operator without singular kernel. Chinese. J. Phys. 77, 1450–1464 (2022)MathSciNetCrossRef
24.
go back to reference Abouelregal, A.E., Sofiyev, A.H., Fahmy, M.A.: Generalized heat equation with the Caputo-Fabrizio fractional derivative for a nonsimple thermoelastic cylinder with temperature-dependent properties. Phy. Mesomech. 25, 135–151 (2022) Abouelregal, A.E., Sofiyev, A.H., Fahmy, M.A.: Generalized heat equation with the Caputo-Fabrizio fractional derivative for a nonsimple thermoelastic cylinder with temperature-dependent properties. Phy. Mesomech. 25, 135–151 (2022)
25.
go back to reference Abouelregal, A.E.: A comparative study of a thermoelastic problem for an infinite rigid cylinder with thermal properties using a new heat conduction model including fractional operators without non-singular kernels. Arch. Appl. Mech. 92, 3141–3161 (2022)CrossRef Abouelregal, A.E.: A comparative study of a thermoelastic problem for an infinite rigid cylinder with thermal properties using a new heat conduction model including fractional operators without non-singular kernels. Arch. Appl. Mech. 92, 3141–3161 (2022)CrossRef
26.
go back to reference Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018)CrossRef Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018)CrossRef
27.
go back to reference Amabili, M., Balasubramanian, P., Ferrari, G.: Nonlinear vibrations and damping of fractional viscoelastic rectangular plates. Nonlinear Dyn. 103, 3581–3609 (2021)CrossRef Amabili, M., Balasubramanian, P., Ferrari, G.: Nonlinear vibrations and damping of fractional viscoelastic rectangular plates. Nonlinear Dyn. 103, 3581–3609 (2021)CrossRef
28.
go back to reference Amabili, M.: Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn. 97, 1785–1797 (2019)CrossRef Amabili, M.: Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations. Nonlinear Dyn. 97, 1785–1797 (2019)CrossRef
29.
go back to reference Amabili, M.: Nonlinear Damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018)MathSciNetCrossRef Amabili, M.: Nonlinear Damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018)MathSciNetCrossRef
30.
go back to reference Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef
31.
go back to reference Yu, Q., Shan, Z.W., Li, J., Huang, X.X., Xiao, L., Sun, J., Ma, E.: Strong crystal size effect on deformation twinning. Nature 463(7279), 335–338 (2010)CrossRef Yu, Q., Shan, Z.W., Li, J., Huang, X.X., Xiao, L., Sun, J., Ma, E.: Strong crystal size effect on deformation twinning. Nature 463(7279), 335–338 (2010)CrossRef
32.
go back to reference Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007)CrossRef Maranganti, R., Sharma, P.: Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007)CrossRef
33.
go back to reference Eringen, A.C.: Nonlocal Continuum Field Theories. Springer-verlag, New York (2002)7.Aifantis, EC.: Gradient deformation models at nano, micro and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999) Eringen, A.C.: Nonlocal Continuum Field Theories. Springer-verlag, New York (2002)7.Aifantis, EC.: Gradient deformation models at nano, micro and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999)
34.
go back to reference Roudbari, M.A., Jorshari, T.D., Lü, C.F., Ansari, R., Kouzani, A.Z., Amabili, M.: A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Wall Struct. 170, 108562 (2022)CrossRef Roudbari, M.A., Jorshari, T.D., Lü, C.F., Ansari, R., Kouzani, A.Z., Amabili, M.: A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin-Wall Struct. 170, 108562 (2022)CrossRef
35.
go back to reference Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)CrossRef Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)CrossRef
36.
go back to reference Bassani, J.L., Needleman, A., Van der Giessen, E.: Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int. J. Solids Struct. 38, 833–853 (2001)CrossRef Bassani, J.L., Needleman, A., Van der Giessen, E.: Plastic flow in a composite: a comparison of nonlocal continuum and discrete dislocation predictions. Int. J. Solids Struct. 38, 833–853 (2001)CrossRef
37.
go back to reference Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in microbeams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. stresses. 42(7), 801–814 (2019)CrossRef Borjalilou, V., Asghari, M., Bagheri, E.: Small-scale thermoelastic damping in microbeams utilizing the modified couple stress theory and the dual-phase-lag heat conduction model. J. Therm. stresses. 42(7), 801–814 (2019)CrossRef
38.
go back to reference Kumar, H., Mukhopadhyay, S.: Size-dependent thermoelastic damping analysis in nanobeam resonators based on Eringen’s nonlocal elasticity and modified couple stress theories. J. Vib. Control 29(7–8), 1510–1523 (2023)MathSciNetCrossRef Kumar, H., Mukhopadhyay, S.: Size-dependent thermoelastic damping analysis in nanobeam resonators based on Eringen’s nonlocal elasticity and modified couple stress theories. J. Vib. Control 29(7–8), 1510–1523 (2023)MathSciNetCrossRef
39.
go back to reference Abouelregal, A.E.: Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory. Appl. Math Mech-Engl. 41(12), 1805–1820 (2020)MathSciNetCrossRef Abouelregal, A.E.: Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory. Appl. Math Mech-Engl. 41(12), 1805–1820 (2020)MathSciNetCrossRef
40.
go back to reference Peng, W., Chen, L.K., He, T.H.: Nonlocal thermoelastic analysis of a functionally graded material microbeam. Appl. Math. Mech-Engl. 42(6), 855–870 (2021)MathSciNetCrossRef Peng, W., Chen, L.K., He, T.H.: Nonlocal thermoelastic analysis of a functionally graded material microbeam. Appl. Math. Mech-Engl. 42(6), 855–870 (2021)MathSciNetCrossRef
41.
go back to reference Awrejcewicz, J., Krysko, V.A., Pavlov, S.P., Zhigalov, M.V., Kalutsky, L.A., Krysko, A.V.: Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory. Nonlinear. Dynam. 99, 919–943 (2020)CrossRef Awrejcewicz, J., Krysko, V.A., Pavlov, S.P., Zhigalov, M.V., Kalutsky, L.A., Krysko, A.V.: Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory. Nonlinear. Dynam. 99, 919–943 (2020)CrossRef
42.
go back to reference Bhattacharya, S., Das, D.: Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos. Struct. 215, 471–492 (2019)CrossRef Bhattacharya, S., Das, D.: Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos. Struct. 215, 471–492 (2019)CrossRef
43.
go back to reference Shi, S.H., He, T.H., Jin, F.: Thermoelastic damping analysis of size-dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect. Int. J. Heat Mass Tran. 170(6), 120977 (2021)CrossRef Shi, S.H., He, T.H., Jin, F.: Thermoelastic damping analysis of size-dependent nano-resonators considering dual-phase-lag heat conduction model and surface effect. Int. J. Heat Mass Tran. 170(6), 120977 (2021)CrossRef
44.
go back to reference Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87, 153106 (2005)CrossRef Ju, Y.S.: Phonon heat transport in silicon nanostructures. Appl. Phys. Lett. 87, 153106 (2005)CrossRef
45.
go back to reference Aubain, M.S., Bandaru, P.R.: Determination of diminished thermal conductivity in silicon thin films using scanning thermoreflectance thermometry. Appl. Phys. Lett. 97, 1–4 (2010)CrossRef Aubain, M.S., Bandaru, P.R.: Determination of diminished thermal conductivity in silicon thin films using scanning thermoreflectance thermometry. Appl. Phys. Lett. 97, 1–4 (2010)CrossRef
46.
go back to reference Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84, 3819–3821 (2004)CrossRef Liu, W., Asheghi, M.: Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl. Phys. Lett. 84, 3819–3821 (2004)CrossRef
47.
go back to reference Liu, X., Wu, X.M., Ren, T.L.: In situ and noncontact measurement of silicon membrane thermal conductivity. Appl. Phys. Lett. 98, 1–4 (2011) Liu, X., Wu, X.M., Ren, T.L.: In situ and noncontact measurement of silicon membrane thermal conductivity. Appl. Phys. Lett. 98, 1–4 (2011)
48.
go back to reference Majumdar, A.: Microscale heat conduction in dielectric thin films. J. Heat. Transf. 115, 7–16 (1993)CrossRef Majumdar, A.: Microscale heat conduction in dielectric thin films. J. Heat. Transf. 115, 7–16 (1993)CrossRef
49.
go back to reference McGaughey, A.J.H., Landry, E.S., Sellan, D.P., Amon, C.H.: Size-dependent model for thin film and nanowire thermal conductivity. Appl. Phys. Lett. 99, 131904 (2011)CrossRef McGaughey, A.J.H., Landry, E.S., Sellan, D.P., Amon, C.H.: Size-dependent model for thin film and nanowire thermal conductivity. Appl. Phys. Lett. 99, 131904 (2011)CrossRef
50.
go back to reference Gu, B.D., He, T.H., Ma, Y.B.: Thermoelastic damping analysis in micro-beam resonators considering nonlocal strain gradient based on dual-phase-lag model. Int. J. Heat Mass Tran. 180, 121771 (2021)CrossRef Gu, B.D., He, T.H., Ma, Y.B.: Thermoelastic damping analysis in micro-beam resonators considering nonlocal strain gradient based on dual-phase-lag model. Int. J. Heat Mass Tran. 180, 121771 (2021)CrossRef
51.
go back to reference Abouelregal, A.E., Sedighi, H.M.: Magneto-thermoelastic behaviour of a fnite viscoelastic rotating rod by incorporating Eringen’s theory and heat equation including Caputo-Fabrizio fractional derivative. Eng. Comput-Germany. 39, 655–668 (2023)CrossRef Abouelregal, A.E., Sedighi, H.M.: Magneto-thermoelastic behaviour of a fnite viscoelastic rotating rod by incorporating Eringen’s theory and heat equation including Caputo-Fabrizio fractional derivative. Eng. Comput-Germany. 39, 655–668 (2023)CrossRef
52.
go back to reference Abouelregal, A.E., Ahmad, H., Aldahlan, M.A., Zhong, X.Z.: Nonlocal magneto-thermoelastic infinite halfspace due to a periodically varying heat flow under Caputo-Fabrizio fractional derivative heat equation. Opean. Phys. 20, 274–288 (2022)CrossRef Abouelregal, A.E., Ahmad, H., Aldahlan, M.A., Zhong, X.Z.: Nonlocal magneto-thermoelastic infinite halfspace due to a periodically varying heat flow under Caputo-Fabrizio fractional derivative heat equation. Opean. Phys. 20, 274–288 (2022)CrossRef
Metadata
Title
Size-dependent thermoelastic damping analysis in functionally graded bi-layered microbeam resonators considering the nonlocal dual-phase-lag heat conduction model
Authors
Wei Peng
Baocai Pan
Publication date
03-04-2024
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-024-02564-y

Premium Partners