Skip to main content
Top
Published in: Fire Technology 6/2016

01-11-2016

Smoke Production and Fractal Structure Properties of Soot from n-Heptane Pool Fires Under Low Pressures

Authors: ShenLin Yang, Song Lu, Xudong Cheng, Rong Zheng, Richard Kwok Kit Yuen

Published in: Fire Technology | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this work is to investigate the influence of low air pressure on the smoke production and fractal structure properties of soot aerosols formed in fires. A series of experiments of n-heptane pool fires were conducted in a pressure chamber that could simulate ambient pressures from 40.4 kPa to 101 kPa. Soot aerosols were collected by carbon-supported copper grids and then examined by scanning electron microscopy to determine the soot morphology. A smoke meter was employed to detect the extinction coefficient of smoke in the chamber. The results indicate that the mean primary particle diameter, the mean number of primary particles per aggregate and the mean aggregate radius of gyration were reduced with decreasing air pressure. The Mueller matrix element S11 and extinction efficiency factor were calculated using the discrete dipole approximation method. For the soot formed at lower pressure, values of S11 of the overall scattering angles are much less than those formed under higher pressure. The scattering asymmetry factors indicate that forward scattering is dominant for soot particles of n-heptane pool fires. The ratio of forward scattering intensity to backward scattering intensity along with the extinction efficiency factor of single soot particle and the extinction coefficient of smoke decrease with decreasing pressure; the mean extinction coefficient of smoke is proportional to pressure to the power 3.3. These results may be useful for engineers to develop smoke detectors or other related technologies applied in cargo compartments or other regions under low pressure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Glassman I, Yetter R (2008) Combustion. Academic Press, Burlington. pp 1–41CrossRef Glassman I, Yetter R (2008) Combustion. Academic Press, Burlington. pp 1–41CrossRef
2.
go back to reference Klusek C, Manickavasagam S, Mengüç MP (2003) Compendium of scattering matrix element profiles for soot agglomerates. J Quant Spectrosc Radiat Transf 79–80(0):839–859CrossRef Klusek C, Manickavasagam S, Mengüç MP (2003) Compendium of scattering matrix element profiles for soot agglomerates. J Quant Spectrosc Radiat Transf 79–80(0):839–859CrossRef
3.
go back to reference Manickavasagam S, Mengüç M (1997) Scattering matrix elements of fractal-like soot agglomerates. Appl Opt 36(6):1337–1351CrossRef Manickavasagam S, Mengüç M (1997) Scattering matrix elements of fractal-like soot agglomerates. Appl Opt 36(6):1337–1351CrossRef
4.
go back to reference Fereres S, Lautenberger C, Fernandez-Pello C, Urban D, Ruff G (2011) Mass flux at ignition in reduced pressure environments. Combust Flame 158(7):1301–1306CrossRef Fereres S, Lautenberger C, Fernandez-Pello C, Urban D, Ruff G (2011) Mass flux at ignition in reduced pressure environments. Combust Flame 158(7):1301–1306CrossRef
5.
go back to reference Köylü ÜÖ, Faeth GM, Farias TL, Carvalho MG (1995) Fractal and projected structure properties of soot aggregates. Combust Flame 100(4):621–633CrossRef Köylü ÜÖ, Faeth GM, Farias TL, Carvalho MG (1995) Fractal and projected structure properties of soot aggregates. Combust Flame 100(4):621–633CrossRef
6.
go back to reference Köylü ÜÖ, Faeth GM (1992) Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Combust Flame 89(2):140–156CrossRef Köylü ÜÖ, Faeth GM (1992) Structure of overfire soot in buoyant turbulent diffusion flames at long residence times. Combust Flame 89(2):140–156CrossRef
7.
go back to reference Sorensen C (2001) Light scattering by fractal aggregates:a review. Aerosol Sci Technol 35:648–687CrossRef Sorensen C (2001) Light scattering by fractal aggregates:a review. Aerosol Sci Technol 35:648–687CrossRef
8.
go back to reference Kim W, Sorensen CM, Fry D, Chakrabarti A (2006) Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J Aerosol Sci 37(3):386–401CrossRef Kim W, Sorensen CM, Fry D, Chakrabarti A (2006) Soot aggregates, superaggregates and gel-like networks in laminar diffusion flames. J Aerosol Sci 37(3):386–401CrossRef
9.
go back to reference Wu Y, Gu X, Cheng T, Xie D, Yu T, Chen H, et al. (2012) The single scattering properties of the aerosol particles as aggregated spheres. J Quant Spectr Radiat Transf 113(12):1454–1466CrossRef Wu Y, Gu X, Cheng T, Xie D, Yu T, Chen H, et al. (2012) The single scattering properties of the aerosol particles as aggregated spheres. J Quant Spectr Radiat Transf 113(12):1454–1466CrossRef
10.
go back to reference Goo J (2012) Development of the size distribution of smoke particles in a compartment fire. Fire Saf J 47:46–53.CrossRef Goo J (2012) Development of the size distribution of smoke particles in a compartment fire. Fire Saf J 47:46–53.CrossRef
11.
go back to reference Dobbins RA, Megaridis CM (1987) Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3(2):254–259CrossRef Dobbins RA, Megaridis CM (1987) Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3(2):254–259CrossRef
12.
go back to reference Samson RJ, Mulholland GW, Gentry JW (1987) Structural analysis of soot agglomerates. Langmuir 3:272–281CrossRef Samson RJ, Mulholland GW, Gentry JW (1987) Structural analysis of soot agglomerates. Langmuir 3:272–281CrossRef
13.
go back to reference Sorensen CM, Cai J, Lu N (1992) Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl Opt 31:6547–6557CrossRef Sorensen CM, Cai J, Lu N (1992) Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames. Appl Opt 31:6547–6557CrossRef
14.
go back to reference Zhang HX, Sorensen CM, Ramer ER, Olivier BJ, Merklin JF (1988) In situ optical structure factor measurements of an aggregating soot aerosol. Langmuir 4:867–871CrossRef Zhang HX, Sorensen CM, Ramer ER, Olivier BJ, Merklin JF (1988) In situ optical structure factor measurements of an aggregating soot aerosol. Langmuir 4:867–871CrossRef
15.
go back to reference Mulholland GW, Mountain RD (1999) Coupled dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates. Combust Flame 119(1):56–68CrossRef Mulholland GW, Mountain RD (1999) Coupled dipole calculation of extinction coefficient and polarization ratio for smoke agglomerates. Combust Flame 119(1):56–68CrossRef
17.
go back to reference Li M, Lu S, Guo J, Chen R, Tsui K-L. (2014) Initial fuel temperature effects on flame spread over aviation kerosene in low- and high-altitude environments. Fire Technol 51:707–721. doi:10.1007/s10694-014-0395-4 CrossRef Li M, Lu S, Guo J, Chen R, Tsui K-L. (2014) Initial fuel temperature effects on flame spread over aviation kerosene in low- and high-altitude environments. Fire Technol 51:707–721. doi:10.​1007/​s10694-014-0395-4 CrossRef
18.
go back to reference Wieser D, Jauch P, Willi U (1997) The influence of high altitude on fire detector test fires. Fire Safety J 29(2–3):195–204CrossRef Wieser D, Jauch P, Willi U (1997) The influence of high altitude on fire detector test fires. Fire Safety J 29(2–3):195–204CrossRef
19.
go back to reference EM Puracell, CR Pennypacker (1973) Scattering and adsorption of light by nonspherical dielectric grains. Astrophys J 186:705–714CrossRef EM Puracell, CR Pennypacker (1973) Scattering and adsorption of light by nonspherical dielectric grains. Astrophys J 186:705–714CrossRef
20.
go back to reference Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. JOSA A 11(4):1491–1499CrossRef Draine BT, Flatau PJ (1994) Discrete-dipole approximation for scattering calculations. JOSA A 11(4):1491–1499CrossRef
21.
go back to reference Draine B, Goodman J (1993) Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys J 405:685–697CrossRef Draine B, Goodman J (1993) Beyond clausius-mossotti—wave-propagation on a polarizable point lattice and the discrete dipole approximation. Astrophys J 405:685–697CrossRef
22.
go back to reference Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872CrossRef Draine BT (1988) The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys J 333:848–872CrossRef
24.
go back to reference LORENZ (2014) Manual obscuration-meter AML Firetestroom-Version LORENZ (2014) Manual obscuration-meter AML Firetestroom-Version
25.
go back to reference Shaddix CR, Smyth KC (1996) Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame 107(4):418–452CrossRef Shaddix CR, Smyth KC (1996) Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames. Combust Flame 107(4):418–452CrossRef
26.
go back to reference KerKer M (1969) The scattering of light and other electromagnetic radiation. Academic Press, London KerKer M (1969) The scattering of light and other electromagnetic radiation. Academic Press, London
27.
go back to reference Dobbins RA, Megaridis CM (1991) Absorption and scattering of light by polydisperse aggregates. Appl Opt 33:30 Dobbins RA, Megaridis CM (1991) Absorption and scattering of light by polydisperse aggregates. Appl Opt 33:30
28.
go back to reference Puri R, Richardson TF, Santoro RJ, Dobbins RA (1993) Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust Flame 92(3):320–333CrossRef Puri R, Richardson TF, Santoro RJ, Dobbins RA (1993) Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combust Flame 92(3):320–333CrossRef
Metadata
Title
Smoke Production and Fractal Structure Properties of Soot from n-Heptane Pool Fires Under Low Pressures
Authors
ShenLin Yang
Song Lu
Xudong Cheng
Rong Zheng
Richard Kwok Kit Yuen
Publication date
01-11-2016
Publisher
Springer US
Published in
Fire Technology / Issue 6/2016
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-015-0526-6

Other articles of this Issue 6/2016

Fire Technology 6/2016 Go to the issue