Skip to main content
Erschienen in: Fire Technology 3/2015

01.05.2015

Initial Fuel Temperature Effects on Flame Spread over Aviation Kerosene in Low- and High-Altitude Environments

verfasst von: Manhou Li, Shouxiang Lu, Jin Guo, Ruiyu Chen, Kwok-Leung Tsui

Erschienen in: Fire Technology | Ausgabe 3/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Long-distance petroleum or oil pipelines and aircraft taking off and landing cover a wide range of altitudes in practice. An increase in altitude leads to a decline in atmosphere pressure, as well as a decrease of the partial pressure of oxygen, which may influence the burning behavior of liquid fuels involved in accidental spills. In order to gain understanding on the hazards of spills from aircraft tanks or oil transport networks, experimental work was conducted in Hefei (50 m) and Lhasa (3,650 m) to investigate the effect of initial fuel temperature on flame spread over aviation kerosene both in low- and high-altitude environments. Data shows that flame spread is faster as the initial temperature increases. The transition from liquid-phase to gas-phase-controlled flame spread occurred at the initial fuel temperature of 65°C in Lhasa, but 82.5°C in Hefei. Moreover, for the same initial fuel temperature and under the regime controlled by liquid-phase transport, the rate of flame spread and temperature rise at low altitudes were smaller than those at higher altitudes, while the subsurface convection length and preheating time were larger. Direct evidence was also obtained to show the flame at both altitudes propagated in a pulsating forward-back-forward manner, whereas the average flame pulsation wavelength and frequency at the high altitude were larger than at the low altitude. Theoretical analyse predicts that an increase in initial fuel temperature or altitude led to an increase in fuel evaporation rate, which enhances flame spread and causes unsteady behavior. Given the difference in flame speed, fire accidents at high altitude are potentially more hazardous than those at low-altitude environment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
5.
8.
Zurück zum Zitat Elam SK, Altenkirch RA, Saito K (1990) Design of a radiant “Strip” heater for simulating liquid fuel flows in flame spreading. Fire Technol 26(2):156–168. doi:10.1007/bf01040180 CrossRef Elam SK, Altenkirch RA, Saito K (1990) Design of a radiant “Strip” heater for simulating liquid fuel flows in flame spreading. Fire Technol 26(2):156–168. doi:10.​1007/​bf01040180 CrossRef
12.
Zurück zum Zitat Patej S, Plourde F, Kim SD, Hennequin D (2002) Vortex structure in a liquid film in the pulsating flame spread regime. Eur Phys J B 140:131–140. doi:10.1051/epjap Patej S, Plourde F, Kim SD, Hennequin D (2002) Vortex structure in a liquid film in the pulsating flame spread regime. Eur Phys J B 140:131–140. doi:10.​1051/​epjap
15.
Zurück zum Zitat Guo J, Lu S, Zhou J, Wang C (2011) Effect of initial temperature on flame spread over aviation kerosene. J Combust Sci Tech 17(2):165–169 Guo J, Lu S, Zhou J, Wang C (2011) Effect of initial temperature on flame spread over aviation kerosene. J Combust Sci Tech 17(2):165–169
20.
Zurück zum Zitat Wark K (1988) Generalized thermodynamic relationships, thermodynamics, 5th edn. McGraw-Hill, Inc., New York Wark K (1988) Generalized thermodynamic relationships, thermodynamics, 5th edn. McGraw-Hill, Inc., New York
21.
Zurück zum Zitat Zhu F, Li K (2011) Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technol 47(3):801–819. doi:10.1007/s10694-010-0201-x CrossRef Zhu F, Li K (2011) Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technol 47(3):801–819. doi:10.​1007/​s10694-010-0201-x CrossRef
22.
Zurück zum Zitat Jacob DJ (1999) Atmospheric pressure. In: Introduction to atmospheric chemistry: supplemental questions and problems, 4th edn. Princeton University Press, Princeton, p 12–20 Jacob DJ (1999) Atmospheric pressure. In: Introduction to atmospheric chemistry: supplemental questions and problems, 4th edn. Princeton University Press, Princeton, p 12–20
Metadaten
Titel
Initial Fuel Temperature Effects on Flame Spread over Aviation Kerosene in Low- and High-Altitude Environments
verfasst von
Manhou Li
Shouxiang Lu
Jin Guo
Ruiyu Chen
Kwok-Leung Tsui
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 3/2015
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-014-0395-4

Weitere Artikel der Ausgabe 3/2015

Fire Technology 3/2015 Zur Ausgabe