Skip to main content
Top
Published in: Journal of Computational Electronics 2/2020

02-03-2020

Sneak, discharge, and leakage current issues in a high-dimensional 1T1M memristive crossbar

Authors: V. A. Demin, I. A. Surazhevsky, A. V. Emelyanov, P. K. Kashkarov, M. V. Kovalchuk

Published in: Journal of Computational Electronics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Memristive crossbar arrays are believed to be the future of high-density nonvolatile memory and neuromorphic systems. However, significant challenges related to the passive crossbar architecture, for example, the sneak current issue, impose limitations on their performance. One of the well-known ways to overcome this problem is to use a one-transistor one-memristor (1T1M) scheme. Nevertheless, for a sufficiently large crossbar, even with a 1T1M architecture, problems appear not only with sneak currents but also with leakage through the gates of the transistors and the discharge of their capacitances. These effects are analyzed herein by simulations and analytically to determine their influence on the performance of a 1T1M crossbar, depending on its dimensions. Numerical results are presented for the examples of \(\mathrm{(CoFeB)}_x(\mathrm{LiNbO}_3)_{100-x}\) nanocomposite and \(\mathrm{ZrO}_2\)(Y)-based memristive structures. The results reveal that the sneak, discharge, and (to a lesser extent) leakage currents can severely degrade the performance of even a not very large (\(<\,10^3\times 10^3\)) 1T1M crossbar. Finally, analytical estimates are used to reveal how a well-known, simple special scheme for switching and reading can fix these negative effects, even for a 1T1M memristive crossbar with rather large dimensions (\(\sim \,10^6\times 10^6\)), taking into account its plausible geometrical size and the scaling dependence of its constituent elements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA. 27–30, pp. 770–778 (June 2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA. 27–30, pp. 770–778 (June 2016)
2.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Inc., Vancouver, BC, Canada, pp. 1097–1105 (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems. Neural Information Processing Systems Foundation, Inc., Vancouver, BC, Canada, pp. 1097–1105 (2012)
3.
go back to reference Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: CVPR (2017) Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: CVPR (2017)
4.
go back to reference Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. CoRR arxiv:abs/1604.07316 (2016) Bojarski, M., Testa, D.D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.: End to end learning for self-driving cars. CoRR arxiv:​abs/​1604.​07316 (2016)
5.
go back to reference Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., Wuensche, H.J.: Driving with tentacles—integral structures for sensing and motion. In: Buehler, M., Iagnemma, K., Singh, S. (eds.) The DARPA Urban Challenge. Springer Tracts in Advanced Robotics, vol. 56. Springer, Berlin (2009) Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., Wuensche, H.J.: Driving with tentacles—integral structures for sensing and motion. In: Buehler, M., Iagnemma, K., Singh, S. (eds.) The DARPA Urban Challenge. Springer Tracts in Advanced Robotics, vol. 56. Springer, Berlin (2009)
6.
go back to reference Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)CrossRef Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015)CrossRef
7.
go back to reference Sharp, T., Galluppi, F., et al.: Power-efficient simulation of detailed cortical microcircuits on SpiNNaker. J. Neurosci. Methods 1, 110–118 (2015) Sharp, T., Galluppi, F., et al.: Power-efficient simulation of detailed cortical microcircuits on SpiNNaker. J. Neurosci. Methods 1, 110–118 (2015)
8.
go back to reference Benjamin, B.V., Gao, P., McQuinn, E.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014)CrossRef Benjamin, B.V., Gao, P., McQuinn, E.: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014)CrossRef
9.
go back to reference Meier, K.: A mixed-signal universal neuromorphic computing system. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4.6.1–4.6.4 (Dec 2015) Meier, K.: A mixed-signal universal neuromorphic computing system. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 4.6.1–4.6.4 (Dec 2015)
10.
go back to reference Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y., Wild, A., Yang, Y., Wang, H.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)CrossRef Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S.H., Dimou, G., Joshi, P., Imam, N., Jain, S., Liao, Y., Lin, C., Lines, A., Liu, R., Mathaikutty, D., McCoy, S., Paul, A., Tse, J., Venkataramanan, G., Weng, Y., Wild, A., Yang, Y., Wang, H.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)CrossRef
11.
go back to reference Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)CrossRef Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015)CrossRef
12.
go back to reference Jiang, H., Han, L., Lin, P., Wang, Z., Jang, M.H., Wu, Q., et al.: Sub-10 nm Ta channel responsible for superior performance of a HfO\(_2\) memristor. Sci. Rep. 6, 28525 (2016)CrossRef Jiang, H., Han, L., Lin, P., Wang, Z., Jang, M.H., Wu, Q., et al.: Sub-10 nm Ta channel responsible for superior performance of a HfO\(_2\) memristor. Sci. Rep. 6, 28525 (2016)CrossRef
13.
go back to reference Minnekhanov, A.A., Emelyanov, A.V., Lapkin, D.A., Nikiruy, K.E., Shvetsov, B.S., Nesmelov, A.A., Rylkov, V.V., Demin, V.A., Erokhin, V.V.: Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019)CrossRef Minnekhanov, A.A., Emelyanov, A.V., Lapkin, D.A., Nikiruy, K.E., Shvetsov, B.S., Nesmelov, A.A., Rylkov, V.V., Demin, V.A., Erokhin, V.V.: Parylene based memristive devices with multilevel resistive switching for neuromorphic applications. Sci. Rep. 9, 10800 (2019)CrossRef
14.
go back to reference Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018)CrossRef Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 9(1), 2385 (2018)CrossRef
15.
go back to reference Cai, F., et al.: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019)CrossRef Cai, F., et al.: A fully integrated reprogrammable memristor–CMOS system for efficient multiply–accumulate operations. Nat. Electron. 2(7), 290–299 (2019)CrossRef
16.
go back to reference Emelyanov, A.V., Lapkin, D.A., Demin, V.A., Erokhin, V.V., Battistoni, S., Baldi, G., et al.: First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv. 6(11), 111301 (2016)CrossRef Emelyanov, A.V., Lapkin, D.A., Demin, V.A., Erokhin, V.V., Battistoni, S., Baldi, G., et al.: First steps towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv. 6(11), 111301 (2016)CrossRef
17.
go back to reference Kim, K.-H., Gaba, S., et al.: A Functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)CrossRef Kim, K.-H., Gaba, S., et al.: A Functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2012)CrossRef
18.
go back to reference Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44, 176–183 (2013)CrossRef Zidan, M.A., Fahmy, H.A.H., Hussain, M.M., Salama, K.N.: Memristor-based memory: the sneak paths problem and solutions. Microelectron. J. 44, 176–183 (2013)CrossRef
19.
go back to reference Srinivasan, V., Chopra, S., et al.: Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. IEEE Electron Device Lett. 33(10), 1396–1398 (2012)CrossRef Srinivasan, V., Chopra, S., et al.: Punchthrough-diode-based bipolar RRAM selector by Si epitaxy. IEEE Electron Device Lett. 33(10), 1396–1398 (2012)CrossRef
20.
go back to reference Kim, S., et al.: Performance of threshold switching in chalcogenide glass for 3D stackable selector. In: Proceedings of Symposium on VLSIT, pp. T240–T241 (June 2013) Kim, S., et al.: Performance of threshold switching in chalcogenide glass for 3D stackable selector. In: Proceedings of Symposium on VLSIT, pp. T240–T241 (June 2013)
21.
go back to reference Lee, W., et al.: Varistor-type bidirectional switch (JMAX > 107A/cm2, selectivity~104) for 3D bipolar resistive memory arrays. In: Proceedings of Symposium on VLSIT, pp. 37–38 (June 2012) Lee, W., et al.: Varistor-type bidirectional switch (JMAX > 107A/cm2, selectivity~104) for 3D bipolar resistive memory arrays. In: Proceedings of Symposium on VLSIT, pp. 37–38 (June 2012)
22.
go back to reference Gi, S., Yeo, I., Chu, M., Kim, S., Lee, B.: Fundamental issues of implementing hardware neural networks using memristor. In: International SoC Design Conference (ISOCC), pp. 215–216. IEEE (2015) Gi, S., Yeo, I., Chu, M., Kim, S., Lee, B.: Fundamental issues of implementing hardware neural networks using memristor. In: International SoC Design Conference (ISOCC), pp. 215–216. IEEE (2015)
23.
go back to reference Yakopcic, C., Taha, T.M., et al.: Analysis of a memristor based 1T1M crossbar architecture. In: International Joint Conference on Neural Networks (2012) Yakopcic, C., Taha, T.M., et al.: Analysis of a memristor based 1T1M crossbar architecture. In: International Joint Conference on Neural Networks (2012)
24.
go back to reference Li, C., Joshua Yang, J., Xia, Q., et al.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018)CrossRef Li, C., Joshua Yang, J., Xia, Q., et al.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018)CrossRef
25.
go back to reference Yao, P., et al.: Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017)CrossRef Yao, P., et al.: Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017)CrossRef
26.
go back to reference Yao, P., Wu, H., Gao, B., et al.: Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020)CrossRef Yao, P., Wu, H., Gao, B., et al.: Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020)CrossRef
27.
go back to reference Danilin, S.N., Shchanikov, S.A., Bordanov, I.A., Zuev, A.D.: Using simulation to define the tolerances for the information and physical parameters of memristors-based artificial neural networks. J. Phys.: Conf. Ser. 1333, 062026 (2019) Danilin, S.N., Shchanikov, S.A., Bordanov, I.A., Zuev, A.D.: Using simulation to define the tolerances for the information and physical parameters of memristors-based artificial neural networks. J. Phys.: Conf. Ser. 1333, 062026 (2019)
30.
go back to reference Aziza, H., Canet, P., Postel-Pellerin, J., Moreau, M., Portal, J.M., Bocquet, M.: ReRAM ON/OFF resistance ratio degradation due to line resistance combined with device variability in 28 nm FDSOI technology. In: Ultimate Integration on Silicon (EUROSOI-ULIS) (2017). https://doi.org/10.1109/ULIS.2017.7962594 Aziza, H., Canet, P., Postel-Pellerin, J., Moreau, M., Portal, J.M., Bocquet, M.: ReRAM ON/OFF resistance ratio degradation due to line resistance combined with device variability in 28 nm FDSOI technology. In: Ultimate Integration on Silicon (EUROSOI-ULIS) (2017). https://​doi.​org/​10.​1109/​ULIS.​2017.​7962594
31.
go back to reference Nikiruy, K.E., et al.: Dopamine-like STDP modulation in nanocomposite memristors. AIP Adv. 9, 065116 (2019)CrossRef Nikiruy, K.E., et al.: Dopamine-like STDP modulation in nanocomposite memristors. AIP Adv. 9, 065116 (2019)CrossRef
34.
go back to reference Emelyanov, A.V., Nikiruy, K.E., Serenko, A.V., Sitnikov, A.V., Yu Presnyakov, M., Rybka, R.B., Sboev, A.G., Rylkov, V.V., Kashkarov, P.K., Kovalchuk, M.V., Demin, V.A.: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights. Nanotechnology 31, 045201 (2020). https://doi.org/10.1088/1361-6528/ab4a6d CrossRef Emelyanov, A.V., Nikiruy, K.E., Serenko, A.V., Sitnikov, A.V., Yu Presnyakov, M., Rybka, R.B., Sboev, A.G., Rylkov, V.V., Kashkarov, P.K., Kovalchuk, M.V., Demin, V.A.: Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights. Nanotechnology 31, 045201 (2020). https://​doi.​org/​10.​1088/​1361-6528/​ab4a6d CrossRef
35.
go back to reference Mikhaylov, A.N., et al.: Field- and irradiation-induced phenomena in memristive nanomaterials. Phys. Status Solidi C 3, 870–881 (2016)CrossRef Mikhaylov, A.N., et al.: Field- and irradiation-induced phenomena in memristive nanomaterials. Phys. Status Solidi C 3, 870–881 (2016)CrossRef
36.
go back to reference Emelyanov, A.V., et al.: Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron. Eng. 215, 110988 (2019)CrossRef Emelyanov, A.V., et al.: Yttria-stabilized zirconia cross-point memristive devices for neuromorphic applications. Microelectron. Eng. 215, 110988 (2019)CrossRef
37.
go back to reference Kim, S., Chen, J., Chen, Y.C., Kim, M.H., Kim, H., Kwon, M.W., et al.: Neuronal dynamics in HfO x/AlO y-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale 11(1), 237–245 (2019)CrossRef Kim, S., Chen, J., Chen, Y.C., Kim, M.H., Kim, H., Kwon, M.W., et al.: Neuronal dynamics in HfO x/AlO y-based homeothermic synaptic memristors with low-power and homogeneous resistive switching. Nanoscale 11(1), 237–245 (2019)CrossRef
38.
go back to reference Yun, M.J., Kim, S., Kim, S., Kim, H.D.: Memory state protected from leakage current in Ti/SiN/NiN/Pt bilayer resistive random-access memory devices for array applications. Semicond. Sci. Technol. 34(7), 075030 (2019)CrossRef Yun, M.J., Kim, S., Kim, S., Kim, H.D.: Memory state protected from leakage current in Ti/SiN/NiN/Pt bilayer resistive random-access memory devices for array applications. Semicond. Sci. Technol. 34(7), 075030 (2019)CrossRef
39.
go back to reference Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2013)MathSciNetCrossRef Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: Team: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211–221 (2013)MathSciNetCrossRef
40.
go back to reference Kvatinsky, S., et al.: VTEAM—a general model for voltage controlled memristors. IEEE Trans. Circuits Syst.—II: Express Briefs 62(8), 786–790 (2015)CrossRef Kvatinsky, S., et al.: VTEAM—a general model for voltage controlled memristors. IEEE Trans. Circuits Syst.—II: Express Briefs 62(8), 786–790 (2015)CrossRef
41.
go back to reference Mladenov, V., Kirilov, S.: A memristor model with a modified window function and activation thresholds. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018) Mladenov, V., Kirilov, S.: A memristor model with a modified window function and activation thresholds. In: 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2018)
42.
go back to reference Amer, S., Sayyaparaju, S., Rose, G.S., Beckmann, K., Cady, N.C.: A practical hafnium-oxide memristor model suitable for circuit design and simulation. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017) Amer, S., Sayyaparaju, S., Rose, G.S., Beckmann, K., Cady, N.C.: A practical hafnium-oxide memristor model suitable for circuit design and simulation. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)
43.
go back to reference Berdan, R., Lim, C., Khiat, A., Papavassiliou, C., Prodromakis, T.: A memristor spice model accounting for volatile characteristics of practical ReRAM. IEEE Electron Device Lett. 35(1), 135–137 (2014)CrossRef Berdan, R., Lim, C., Khiat, A., Papavassiliou, C., Prodromakis, T.: A memristor spice model accounting for volatile characteristics of practical ReRAM. IEEE Electron Device Lett. 35(1), 135–137 (2014)CrossRef
44.
go back to reference Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)MATH Biolek, Z., Biolek, D., Biolkova, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)MATH
45.
go back to reference Chang, T., Jo, S.H., Kim, K.H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)CrossRef Chang, T., Jo, S.H., Kim, K.H., Sheridan, P., Gaba, S., Lu, W.: Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 102(4), 857–863 (2011)CrossRef
46.
go back to reference García-Redondo, F., Gowers, R.P., Crespo-Yepes, A., López-Vallejo, M., Jiang, L.: Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1255–1264 (2016)MathSciNetCrossRef García-Redondo, F., Gowers, R.P., Crespo-Yepes, A., López-Vallejo, M., Jiang, L.: Spice compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Trans. Circuits Syst. I Regul. Pap. 63(8), 1255–1264 (2016)MathSciNetCrossRef
47.
go back to reference Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device spice model and its application in circuit design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(8), 1201–1214 (2013)CrossRef Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device spice model and its application in circuit design. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(8), 1201–1214 (2013)CrossRef
48.
go back to reference Siemon, A., Ferch, S., Heittmann, A., Waser, R., Wouters, D.J., Menzel, S.: Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels. APL Mater. 7, 091110 (2019)CrossRef Siemon, A., Ferch, S., Heittmann, A., Waser, R., Wouters, D.J., Menzel, S.: Analyses of a 1-layer neuromorphic network using memristive devices with non-continuous resistance levels. APL Mater. 7, 091110 (2019)CrossRef
49.
go back to reference BSIMSOIv4.4 MOSFET MODEL Users “Manual”. BSIM GROUP (2010) BSIMSOIv4.4 MOSFET MODEL Users “Manual”. BSIM GROUP (2010)
50.
go back to reference Yang, J.Joshua, Xia, Qiangfei, et al.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019)CrossRef Yang, J.Joshua, Xia, Qiangfei, et al.: Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 1, 49–57 (2019)CrossRef
51.
go back to reference Yoo, Hyeonjoong, Pimmel, Russell L.: The effect of weight precision and range on neural network classifier performance. Neurocomputing 6, 541–549 (1994)CrossRef Yoo, Hyeonjoong, Pimmel, Russell L.: The effect of weight precision and range on neural network classifier performance. Neurocomputing 6, 541–549 (1994)CrossRef
52.
go back to reference Shevgoor, M., et al.: Improving memristor memory with sneak current sharing. In: 33rd IEEE International Conference on Computer Design (ICCD) (2015) Shevgoor, M., et al.: Improving memristor memory with sneak current sharing. In: 33rd IEEE International Conference on Computer Design (ICCD) (2015)
53.
go back to reference Kataeva, I. et al.: Towards the development of analog neuromorphic chip prototype with 2.4 M integrated memristors. 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019) Kataeva, I. et al.: Towards the development of analog neuromorphic chip prototype with 2.4 M integrated memristors. 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2019)
54.
go back to reference Merrikh-Bayat, F., Merrikh-Bayat, F., Shouraki, S.B.: The neuro-fuzzy computing system with the capacity of implementation on a memristor crossbar and optimization-free hardware training. IEEE Trans. Fuzzy Syst. 22(5), 1272–1287 (2014)CrossRef Merrikh-Bayat, F., Merrikh-Bayat, F., Shouraki, S.B.: The neuro-fuzzy computing system with the capacity of implementation on a memristor crossbar and optimization-free hardware training. IEEE Trans. Fuzzy Syst. 22(5), 1272–1287 (2014)CrossRef
55.
go back to reference Sun, Sheng-Yang, Li, Z., Li, J., Liu, H., Liua, H., Li, Q.: A memristor-based convolutional neural network with full parallelization architecture. IEICE Electron. Express 16(3), 1–12 (2019)CrossRef Sun, Sheng-Yang, Li, Z., Li, J., Liu, H., Liua, H., Li, Q.: A memristor-based convolutional neural network with full parallelization architecture. IEICE Electron. Express 16(3), 1–12 (2019)CrossRef
Metadata
Title
Sneak, discharge, and leakage current issues in a high-dimensional 1T1M memristive crossbar
Authors
V. A. Demin
I. A. Surazhevsky
A. V. Emelyanov
P. K. Kashkarov
M. V. Kovalchuk
Publication date
02-03-2020
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2020
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-020-01470-0

Other articles of this Issue 2/2020

Journal of Computational Electronics 2/2020 Go to the issue