Skip to main content
Top

2022 | OriginalPaper | Chapter

Solar Detoxification and Disinfection of Water

Authors : S. Malato, I. Oller, Inmaculada Polo, P. Fernández-Ibañez

Published in: Solar Thermal Energy

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Excerpt

Absorber tube
The tube through which the fluid is to be illuminated and/or heated up in a solar collector.
CPC
Compound Parabolic Collector. They are static collectors with a reflective surface following an involute around a cylindrical reactor and have been found to provide the best optics for low concentration systems.
Electron/hole
Negative and positive charge generated in an illuminated semiconductor. The excited electrons are transferred to the reducible specimen at the same time that the catalyst accepts electrons from the oxidizable specimen, which occupies the holes. In both directions, the net flow of electrons is null and the catalyst remains unaltered.
Immobilized catalyst
Anchoring the catalyst onto some type of inert support inside the reactor.
Mineralization
Conversion of organic compounds to inorganic ones. These inorganic compounds are usually carbon dioxide, water, and acids (nontoxic substances).
Photocatalysis
Combination of photochemistry with catalysis. Both light and catalyst are necessary to achieve or to accelerate a chemical reaction. Photocatalysis may be defined as the “acceleration of a photoreaction by the presence of a catalyst.” Heterogeneous processes employ semiconductor slurries for catalysis, whereas homogeneous photocatalysis is used in a single-phase system.
Photo-Fenton
Combination of Fe2+, H2O2, and irradiation for producing hydroxyl radicals. The main advantage of the photo-Fenton process is the light sensitivity up to a wavelength of 550 nm.
Photoreactor
Reactor where a photochemical reaction takes place.
Quantum yield
The ratio between the number of reacting molecules of target compound or product formed and the quantity of photons absorbed by the system.
Semiconductor
Material with an appropriate energetic separation between its valence and conduction bands, which can be surpassed applying external energy (for example, light). Metal oxides and sulfides represent a large class of semiconductor materials suitable for photocatalytic purposes.
Solar photochemistry
This term includes those chemical processes which use the sun to drive specific chemical reactions by direct absorption of solar photons.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551CrossRef Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551CrossRef
2.
go back to reference Malato S, Blanco J, Alarcón DC, Maldonado MI, Fernández P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149CrossRef Malato S, Blanco J, Alarcón DC, Maldonado MI, Fernández P, Gernjak W (2007) Photocatalytic decontamination and disinfection of water with solar collectors. Catal Today 122:137–149CrossRef
3.
go back to reference Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRef
4.
go back to reference Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008CrossRef Rizzo L, Malato S, Antakyali D, Beretsou VG, Đolić MB, Gernjak W, Heath E, Ivancev-Tumbas I, Karaolia P, Lado Ribeiro AR, Mascolo G, McArdell CS, Schaar H, Silva AMT, Fatta-Kassinos D (2019) Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ 655:986–1008CrossRef
5.
go back to reference Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review. Sci Total Environ 409:4141–4166CrossRef Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination-A review. Sci Total Environ 409:4141–4166CrossRef
6.
go back to reference Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol 7:127–144CrossRef Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol 7:127–144CrossRef
7.
go back to reference Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRef Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Perspective advanced oxidation processes for water treatment: advances and trends for R&D. J Chem Technol Biotechnol 83:769–776CrossRef
8.
go back to reference Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51CrossRef Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int 75:33–51CrossRef
9.
go back to reference WHO/UNICEF (2015) Progress on sanitation and drinking water – 2015 update and MDG assessment. WHO Library Cataloguing-in-Publication Data. WHO Press, Geneva, Switzerland WHO/UNICEF (2015) Progress on sanitation and drinking water – 2015 update and MDG assessment. WHO Library Cataloguing-in-Publication Data. WHO Press, Geneva, Switzerland
11.
go back to reference Badia-Fabregat M, Lucas D, Pereira MA, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barceló D, Vicent T, Caminal G (2016) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100:2401–2415CrossRef Badia-Fabregat M, Lucas D, Pereira MA, Alves M, Pennanen T, Fritze H, Rodríguez-Mozaz S, Barceló D, Vicent T, Caminal G (2016) Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Appl Microbiol Biotechnol 100:2401–2415CrossRef
12.
go back to reference Abeledo-Lameiro MJ, Polo-López MI, Ares-Mazás E, Gómez-Couso H (2019) Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Appl Catal B Environ 253:341–347CrossRef Abeledo-Lameiro MJ, Polo-López MI, Ares-Mazás E, Gómez-Couso H (2019) Inactivation of the waterborne pathogen Cryptosporidium parvum by photo-Fenton process under natural solar conditions. Appl Catal B Environ 253:341–347CrossRef
13.
go back to reference Nahim-Granados S, Rivas-Ibáñez G, Sánchez Pérez JA, Oller I, Malato S, Polo-López MI (2020) Fresh-cut wastewater reclamation: Techno-Economical assessment of solar driven processes at pilot plant scale. Appl Catal B Environ 278:119334CrossRef Nahim-Granados S, Rivas-Ibáñez G, Sánchez Pérez JA, Oller I, Malato S, Polo-López MI (2020) Fresh-cut wastewater reclamation: Techno-Economical assessment of solar driven processes at pilot plant scale. Appl Catal B Environ 278:119334CrossRef
14.
go back to reference Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRef Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27CrossRef
15.
go back to reference Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207CrossRef Kanakaraju D, Glass BD, Oelgemöller M (2018) Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. J Environ Manag 219:189–207CrossRef
16.
go back to reference Calza P, Pelizzetti E, Minero C (2005) The fate of organic nitrogen in photocatalysis: an overview. J Appl Electrochem 35:665–673CrossRef Calza P, Pelizzetti E, Minero C (2005) The fate of organic nitrogen in photocatalysis: an overview. J Appl Electrochem 35:665–673CrossRef
17.
go back to reference Konstantinou IK, Albanis TA (2004) TiO2-assisted catalytic degradation of azodyes in aqueous solutions: kinetic and mechanistic investigations. A review. Appl Catal B Environ 49:1–14CrossRef Konstantinou IK, Albanis TA (2004) TiO2-assisted catalytic degradation of azodyes in aqueous solutions: kinetic and mechanistic investigations. A review. Appl Catal B Environ 49:1–14CrossRef
18.
go back to reference Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRef Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59CrossRef
19.
go back to reference Konstantinou IK, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using articficial and solar light: intermediates and degradation pathways. Appl Catal B: Environ 42:319–335CrossRef Konstantinou IK, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using articficial and solar light: intermediates and degradation pathways. Appl Catal B: Environ 42:319–335CrossRef
20.
go back to reference Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A (2017) Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 983:9–41CrossRef Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A (2017) Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 983:9–41CrossRef
21.
go back to reference Špánik I, Machyňáková A (2018) Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci 41:163–179CrossRef Špánik I, Machyňáková A (2018) Recent applications of gas chromatography with high-resolution mass spectrometry. J Sep Sci 41:163–179CrossRef
22.
go back to reference Cassano AE, Alfano OE (2000) Reaction engineering of suspended solids heterogeneous photocatalytic reactors. Catal Today 58:167–197CrossRef Cassano AE, Alfano OE (2000) Reaction engineering of suspended solids heterogeneous photocatalytic reactors. Catal Today 58:167–197CrossRef
23.
go back to reference Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 14:48–65 Herrmann JM (2005) Heterogeneous photocatalysis: state of the art and present applications. Top Catal 14:48–65
24.
go back to reference Malato S, Blanco J, Campos A, Cáceres J, Guillard C, Herrmann JM, Fernández-Alba AR (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B Environ 42:349–357CrossRef Malato S, Blanco J, Campos A, Cáceres J, Guillard C, Herrmann JM, Fernández-Alba AR (2003) Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Appl Catal B Environ 42:349–357CrossRef
25.
go back to reference Kormann C, Bahnemann DW, Hoffmann MR (2001) Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500CrossRef Kormann C, Bahnemann DW, Hoffmann MR (2001) Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Environ Sci Technol 25:494–500CrossRef
26.
go back to reference Fernández-Ibáñez P, Blanco J, Malato S, de las Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Wat Res 37:3180–3188CrossRef Fernández-Ibáñez P, Blanco J, Malato S, de las Nieves FJ (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Wat Res 37:3180–3188CrossRef
27.
go back to reference Cunningham J, Sedlak J (1996) Kinetic studies of depollution process in TiO2 slurries: interdependences of adsorption and UV-intensity. Catal Today 29:309–315CrossRef Cunningham J, Sedlak J (1996) Kinetic studies of depollution process in TiO2 slurries: interdependences of adsorption and UV-intensity. Catal Today 29:309–315CrossRef
28.
go back to reference Monllor-Satoca D, Gómez R, González-Hidalgo M, Salvador P (2007) The “Direct-Indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255CrossRef Monllor-Satoca D, Gómez R, González-Hidalgo M, Salvador P (2007) The “Direct-Indirect” model: an alternative kinetic approach in heterogeneous photocatalysis based on the degree of interaction of dissolved pollutant species with the semiconductor surface. Catal Today 129:247–255CrossRef
29.
go back to reference Minero C (1999) Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal Today 54:205–216CrossRef Minero C (1999) Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal Today 54:205–216CrossRef
30.
go back to reference Malato S, Blanco J, Vidal A, Cáceres J, Gernjak W (2003) Applied studies in solar photocatalytic detoxification: an overview. Sol Energy 75:329–336CrossRef Malato S, Blanco J, Vidal A, Cáceres J, Gernjak W (2003) Applied studies in solar photocatalytic detoxification: an overview. Sol Energy 75:329–336CrossRef
31.
go back to reference Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459CrossRef Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459CrossRef
32.
go back to reference Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRef Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192CrossRef
33.
go back to reference Gerischer H (1995) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 40:1277–1699CrossRef Gerischer H (1995) The impact of semiconductors on the concepts of electrochemistry. Electrochim Acta 40:1277–1699CrossRef
34.
go back to reference Martin ST, Lee AT, Hoffmann MR (1995) Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons. Environ Sci Technol 29:2567–2573CrossRef Martin ST, Lee AT, Hoffmann MR (1995) Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons. Environ Sci Technol 29:2567–2573CrossRef
35.
go back to reference Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRef Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129CrossRef
36.
go back to reference Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 3:1–84CrossRef Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 3:1–84CrossRef
37.
go back to reference Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910CrossRef Fenton HJH (1894) Oxidation of tartaric acid in presence of iron. J Chem Soc 65:899–910CrossRef
38.
go back to reference Kavitha V, Palanivelu K (2004) The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55:1235–1243CrossRef Kavitha V, Palanivelu K (2004) The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55:1235–1243CrossRef
39.
go back to reference Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRef Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ Sci Technol 26:313–319CrossRef
40.
go back to reference Faust BC, Hoigne J (1990) Photolysis of Fe(III)-hidroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ 24:79–89CrossRef Faust BC, Hoigne J (1990) Photolysis of Fe(III)-hidroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ 24:79–89CrossRef
41.
go back to reference Polo-López MI, Sánchez Pérez JA (2020) Perspectives of the solar photo-Fenton process against the spreading of pathogens, antibiotic-resistant bacteria and genes in the environment. Curr Opin Green Sustain Chem 27:100416CrossRef Polo-López MI, Sánchez Pérez JA (2020) Perspectives of the solar photo-Fenton process against the spreading of pathogens, antibiotic-resistant bacteria and genes in the environment. Curr Opin Green Sustain Chem 27:100416CrossRef
42.
go back to reference Oller I, Malato S (2021) Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr Opin Green Sustain Chem 29:100458CrossRef Oller I, Malato S (2021) Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Curr Opin Green Sustain Chem 29:100458CrossRef
43.
go back to reference Zhan Y, Zhou MA (2019) Critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater 362:436–450CrossRef Zhan Y, Zhou MA (2019) Critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. J Hazard Mater 362:436–450CrossRef
44.
go back to reference Zapata A, Velegraki T, Sánchez-Pérez JA, Mantzavinos D, Maldonado MI, Malato S (2009) Solar photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Appl Catal B Environ 88:448–454CrossRef Zapata A, Velegraki T, Sánchez-Pérez JA, Mantzavinos D, Maldonado MI, Malato S (2009) Solar photo-Fenton treatment of pesticides in water: effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Appl Catal B Environ 88:448–454CrossRef
45.
go back to reference Malato S, Blanco J, Maldonado MI, Fernández P, Alarcon D, Collares M, Farinha J, Correia J (2004) Engineering of solar photocatalytic collectors. Sol Energy 77:513–524CrossRef Malato S, Blanco J, Maldonado MI, Fernández P, Alarcon D, Collares M, Farinha J, Correia J (2004) Engineering of solar photocatalytic collectors. Sol Energy 77:513–524CrossRef
46.
go back to reference Sagawe G, Lehnard A, Lubber M, Rochendorf G, Bahnemann D (2001) The insulated solar Fenton hybrid process: fundamental investigations. Helv Chim Acta 84:3742–3758CrossRef Sagawe G, Lehnard A, Lubber M, Rochendorf G, Bahnemann D (2001) The insulated solar Fenton hybrid process: fundamental investigations. Helv Chim Acta 84:3742–3758CrossRef
47.
go back to reference Gernjak W, Fuerhacker M, Fernández-Ibañez P, Blanco J, Malato S (2006) Solar photo-Fenton treatment – process parameters and process control. Appl Catal B Environ 64:121–130CrossRef Gernjak W, Fuerhacker M, Fernández-Ibañez P, Blanco J, Malato S (2006) Solar photo-Fenton treatment – process parameters and process control. Appl Catal B Environ 64:121–130CrossRef
48.
go back to reference Zapata A, Oller I, Rizzo L, Hilgert S, Maldonado MI, Sánchez-Pérez JA, Malato S (2010) Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Appl Catal B Environ 97:292–298CrossRef Zapata A, Oller I, Rizzo L, Hilgert S, Maldonado MI, Sánchez-Pérez JA, Malato S (2010) Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Appl Catal B Environ 97:292–298CrossRef
49.
go back to reference Sapieszko RS, Patel RC, Matijevic E (1977) Ferric hydrous oxide sols. 2. Thermodynamics of aqueous hydroxo and sulfato ferric complexes. J Phys Chem 81:1061–1068CrossRef Sapieszko RS, Patel RC, Matijevic E (1977) Ferric hydrous oxide sols. 2. Thermodynamics of aqueous hydroxo and sulfato ferric complexes. J Phys Chem 81:1061–1068CrossRef
50.
go back to reference (2019) Progress on household drinking water, sanitation and hygiene 2000–2017: special focus on inequalities. United Nations Children’s Fund (UNICEF) and World Health Organization (2019) Progress on household drinking water, sanitation and hygiene 2000–2017: special focus on inequalities. United Nations Children’s Fund (UNICEF) and World Health Organization
51.
go back to reference Acra A, Karahagopian Y, Raffoul Z, Dajani R (1980) Disinfection of oral rehydration solutions by sunlight. Lancet 2:1257–1258CrossRef Acra A, Karahagopian Y, Raffoul Z, Dajani R (1980) Disinfection of oral rehydration solutions by sunlight. Lancet 2:1257–1258CrossRef
54.
go back to reference Miller RV, Jeffrey W, Mitchell D, Elasri M (1999) Bacterial responses to ultraviolet light. ASM News 65:535–541 Miller RV, Jeffrey W, Mitchell D, Elasri M (1999) Bacterial responses to ultraviolet light. ASM News 65:535–541
55.
go back to reference Hoerter JD, Arnold AA, Kuczynska DA (2005) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photochem Photobiol B: Biol 81:171–180CrossRef Hoerter JD, Arnold AA, Kuczynska DA (2005) Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. J Photochem Photobiol B: Biol 81:171–180CrossRef
56.
go back to reference Rincón AG, Pulgarin C (2004) Field solar E coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? Sol Energy 77:635–648CrossRef Rincón AG, Pulgarin C (2004) Field solar E coli inactivation in the absence and presence of TiO2: is UV solar dose an appropriate parameter for standardization of water solar disinfection? Sol Energy 77:635–648CrossRef
57.
go back to reference Sichel C, Tello J, de Cara M, Fernandez-Ibanez P (2007) Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal Today 129:152–160CrossRef Sichel C, Tello J, de Cara M, Fernandez-Ibanez P (2007) Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal Today 129:152–160CrossRef
58.
go back to reference Rincón AG, Pulgarín C (2004) Bactericidal action of illuminated TiO2 on pure E. coli and natural bacteria consortia: post-irradiation events in the dark assessment of the effective disinfection time. Appl Catal B Environ 49:99–112CrossRef Rincón AG, Pulgarín C (2004) Bactericidal action of illuminated TiO2 on pure E. coli and natural bacteria consortia: post-irradiation events in the dark assessment of the effective disinfection time. Appl Catal B Environ 49:99–112CrossRef
59.
go back to reference Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330–1333CrossRef Matsunaga T, Tomoda R, Nakajima T, Nakamura N, Komine T (1988) Continuous-sterilization system that uses photosemiconductor powders. Appl Environ Microbiol 54:1330–1333CrossRef
60.
go back to reference Méndez-Hermida F, Ares-Mazás E, McGuigan KG, Boyle M, Sichel C, Fernández-Ibáñez P (2007) Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J Photochem Photobiol B Biol 88:105–111CrossRef Méndez-Hermida F, Ares-Mazás E, McGuigan KG, Boyle M, Sichel C, Fernández-Ibáñez P (2007) Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J Photochem Photobiol B Biol 88:105–111CrossRef
61.
go back to reference Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39:877–883CrossRef Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39:877–883CrossRef
62.
go back to reference Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the baterial wall membrane at the TiO2 interface by ATR-FTIR and lase kinetic spectroscopy. Langmuir 21:4631–4641CrossRef Kiwi J, Nadtochenko V (2005) Evidence for the mechanism of photocatalytic degradation of the baterial wall membrane at the TiO2 interface by ATR-FTIR and lase kinetic spectroscopy. Langmuir 21:4631–4641CrossRef
63.
go back to reference Sichel C, de Cara M, Tello J, Blanco J, Fernández-Ibáñez P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B: Environ 74:152–160CrossRef Sichel C, de Cara M, Tello J, Blanco J, Fernández-Ibáñez P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B: Environ 74:152–160CrossRef
64.
go back to reference Gumy D, Rincón AG, Hajdu R, Pulgarin C (2006) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Sol Energy 80:1376–1381CrossRef Gumy D, Rincón AG, Hajdu R, Pulgarin C (2006) Solar photocatalysis for detoxification and disinfection of water: different types of suspended and fixed TiO2 catalysts study. Sol Energy 80:1376–1381CrossRef
65.
go back to reference Yu JC, Ho W, Yu J, Yip H, Po KW, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179CrossRef Yu JC, Ho W, Yu J, Yip H, Po KW, Zhao J (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179CrossRef
66.
go back to reference Rincón AG, Pulgarin C (2003) Photocatalytical inactivaton of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catal B Environ 44:263–284CrossRef Rincón AG, Pulgarin C (2003) Photocatalytical inactivaton of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl Catal B Environ 44:263–284CrossRef
67.
go back to reference Vidal A, Díaz AI, El Hraiki A, Romero M, Muguruza I, Senhaji F, González J (1999) Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal Today 54:183–190CrossRef Vidal A, Díaz AI, El Hraiki A, Romero M, Muguruza I, Senhaji F, González J (1999) Solar photocatalysis for detoxification and disinfection of contaminated water: pilot plant studies. Catal Today 54:183–190CrossRef
68.
go back to reference Fernández P, Blanco J, Sichel C, Malato S (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 101:345–352CrossRef Fernández P, Blanco J, Sichel C, Malato S (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 101:345–352CrossRef
69.
go back to reference Navntoft C, Araujo P, Litter MI, Apella MC, Fernández D, Puchulu ME, Del Margarita VH, Blesa MA (2007) Field tests of the solar water detoxification SOLWATER reactor in Los Pereyra, Tucumán, Argentina. J Solar Energy Eng 129:127–134CrossRef Navntoft C, Araujo P, Litter MI, Apella MC, Fernández D, Puchulu ME, Del Margarita VH, Blesa MA (2007) Field tests of the solar water detoxification SOLWATER reactor in Los Pereyra, Tucumán, Argentina. J Solar Energy Eng 129:127–134CrossRef
70.
go back to reference Blanco J, Malato S (2003) Solar Detoxification. UNESCO Publishing, France, Paris Blanco J, Malato S (2003) Solar Detoxification. UNESCO Publishing, France, Paris
71.
go back to reference Blanco J, Malato S, Fernández P, Vidal A, Morales A, Trincado P, de Oliveira JC, Minero C, Musci M, Casalle C, Brunotte M, Tratzky S, Dischinger N, Funken KH, Sattler C, Vincent M, Collares-Pereira M, Mendes JF, Rangel CM (2000) Compound parabolic concentrator technology development to commercial solar detoxification applications. Sol Energy 67:317–330CrossRef Blanco J, Malato S, Fernández P, Vidal A, Morales A, Trincado P, de Oliveira JC, Minero C, Musci M, Casalle C, Brunotte M, Tratzky S, Dischinger N, Funken KH, Sattler C, Vincent M, Collares-Pereira M, Mendes JF, Rangel CM (2000) Compound parabolic concentrator technology development to commercial solar detoxification applications. Sol Energy 67:317–330CrossRef
72.
go back to reference Goswami DY, Böer KW (1995) Engineering of solar photocatalytic detoxification and disinfection processes. In: Advances in solar energy. American Solar Energy Society. WHO Press, Geneva, Switzerland, pp 165–209 Goswami DY, Böer KW (1995) Engineering of solar photocatalytic detoxification and disinfection processes. In: Advances in solar energy. American Solar Energy Society. WHO Press, Geneva, Switzerland, pp 165–209
73.
go back to reference Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15CrossRef Malato S, Blanco J, Vidal A, Richter C (2002) Photocatalysis with solar energy at a pilot-plant scale: an overview. Appl Catal B Environ 37:1–15CrossRef
74.
go back to reference Blanco-Galvez J, Fernández-Ibáñez P, Malato-Rodríguez S (2007) Solar photocatalytic detoxification and disinfection of water: recent overview. J Solar Energy Eng 129:4–15CrossRef Blanco-Galvez J, Fernández-Ibáñez P, Malato-Rodríguez S (2007) Solar photocatalytic detoxification and disinfection of water: recent overview. J Solar Energy Eng 129:4–15CrossRef
75.
go back to reference Welford WT, Winston R (1978) The optics of non-imaging concentrators light solar energy. Academic Press Inc, New York Welford WT, Winston R (1978) The optics of non-imaging concentrators light solar energy. Academic Press Inc, New York
76.
go back to reference Colina-Márquez J, Machuca-Martínez F, Li Puma JL (2009) Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field. Environ Sci Technol 43:8953–8960CrossRef Colina-Márquez J, Machuca-Martínez F, Li Puma JL (2009) Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field. Environ Sci Technol 43:8953–8960CrossRef
77.
go back to reference Muñoz I, Peral J, Ayllón AJ, Malato S, Passarinho P, Domènech X (2006) Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment. Water Res 40:3533–3540CrossRef Muñoz I, Peral J, Ayllón AJ, Malato S, Passarinho P, Domènech X (2006) Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment. Water Res 40:3533–3540CrossRef
78.
go back to reference Giménez J, Bayarri B, González O, Malato S, Peral J, Esplugas S (2015) Advanced oxidation processes at laboratory scale: environmental and economic impacts. ACS Sustain Chem Eng 3:3188–3196CrossRef Giménez J, Bayarri B, González O, Malato S, Peral J, Esplugas S (2015) Advanced oxidation processes at laboratory scale: environmental and economic impacts. ACS Sustain Chem Eng 3:3188–3196CrossRef
79.
go back to reference Gallego-Schmid A, Zepon Tarpani RR, Miralles-Cuevas S, Cabrera-Reina A, Malato S, Azapagic A (2019) Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci Total Environ 650:2210–2220CrossRef Gallego-Schmid A, Zepon Tarpani RR, Miralles-Cuevas S, Cabrera-Reina A, Malato S, Azapagic A (2019) Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Sci Total Environ 650:2210–2220CrossRef
go back to reference Alfano OM, Bahnemann D, Cassano AE, Dillert D, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58:199–230CrossRef Alfano OM, Bahnemann D, Cassano AE, Dillert D, Goslich R (2000) Photocatalysis in water environments using artificial and solar light. Catal Today 58:199–230CrossRef
go back to reference Augugliaro V, Litter M, Palmisano L, Soria J (2007) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photo process performance. J Photochem Photobiol C: Photochem Rev 7:123–144 Augugliaro V, Litter M, Palmisano L, Soria J (2007) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photo process performance. J Photochem Photobiol C: Photochem Rev 7:123–144
go back to reference Cassano AE, Alfano OE (2000) Reaction engineering of suspended solids heterogeneous photocatalytic reactors. Catal Today 58:167–197CrossRef Cassano AE, Alfano OE (2000) Reaction engineering of suspended solids heterogeneous photocatalytic reactors. Catal Today 58:167–197CrossRef
go back to reference Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21CrossRef Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21CrossRef
go back to reference Helz GR, Zepp RG, Crosby DG (1994) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton Helz GR, Zepp RG, Crosby DG (1994) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton
go back to reference Herrmann JM (2007) Environmental green chemistry as defined by photocatalysis. J Hazard Mater 146:624–629CrossRef Herrmann JM (2007) Environmental green chemistry as defined by photocatalysis. J Hazard Mater 146:624–629CrossRef
go back to reference Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRef Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698CrossRef
go back to reference Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. Crit Rev. Environ Sci Technol 44:2577–2641CrossRef Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. Crit Rev. Environ Sci Technol 44:2577–2641CrossRef
go back to reference Serpone N, Pelizzetti E (1989) Photocatalysis: fundamental and applications. Wiley, New York Serpone N, Pelizzetti E (1989) Photocatalysis: fundamental and applications. Wiley, New York
Metadata
Title
Solar Detoxification and Disinfection of Water
Authors
S. Malato
I. Oller
Inmaculada Polo
P. Fernández-Ibañez
Copyright Year
2022
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-0716-1422-8_686