Skip to main content
Top

2013 | OriginalPaper | Chapter

3. Solid-State Biological Pretreatment of Lignocellulosic Biomass

Authors : Caixia Wan, Yebo Li

Published in: Green Biomass Pretreatment for Biofuels Production

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interest in biological pretreatment of lignocellulosic biomass has shifted from traditional applications, such as ruminant feed upgrading and biopulping, to biofuel production. Biological pretreatment is considered to be a “green” technology as it is performed under ambient conditions without chemical addition. The main benefits include low energy requirements and little or no waste stream output. It has the potential to be applied to on-farm wet storage for cost-effective biofuels production from lignocellulosic biomass. White rot fungi are particularly suitable for biological pretreatment as they enzymatically degrade lignin through their unique ligninolytic systems. This chapter reviews biological pretreatment of lignocellulosic biomass with white rot fungi under solid-sate fermentation for on-farm application. The topics discussed focus on ligninolytic systems, processing conditions, and degradation effectiveness of lignocellulose biomass.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akin DE, Rigsby LL, Sethuraman A, Morrison WH, Gamble GR, Eriksson KEL (1995) Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white-rot fungi Ceriporiopsis-Subvermispora and Cyathus-Stercoreus. Appl Environ Microbiol 61:1591–1598 Akin DE, Rigsby LL, Sethuraman A, Morrison WH, Gamble GR, Eriksson KEL (1995) Alterations in structure, chemistry, and biodegradability of grass lignocellulose treated with the white-rot fungi Ceriporiopsis-Subvermispora and Cyathus-Stercoreus. Appl Environ Microbiol 61:1591–1598
go back to reference Anderson W, Akin D (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366CrossRef Anderson W, Akin D (2008) Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J Ind Microbiol Biotechnol 35:355–366CrossRef
go back to reference Baba Y, Tanabe T, Shirai N, Watanabe T, Honda Y, Watanabe T (2011) Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenerg 35:320–324CrossRef Baba Y, Tanabe T, Shirai N, Watanabe T, Honda Y, Watanabe T (2011) Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass Bioenerg 35:320–324CrossRef
go back to reference Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S 999–S101 Blanchette RA (1995) Degradation of the lignocellulose complex in wood. Can J Bot 73:S 999–S101
go back to reference Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213CrossRef Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53:203–213CrossRef
go back to reference Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRef Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRef
go back to reference Bogan BW, Schoenike B, Lamar RT, Cullen D (1996) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703 Bogan BW, Schoenike B, Lamar RT, Cullen D (1996) Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol 62:3697–3703
go back to reference Bollag JM, Leonwicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854 Bollag JM, Leonwicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854
go back to reference Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258CrossRef Breen A, Singleton FL (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258CrossRef
go back to reference Call HP, Mücke I (1997) History, overview, and applications of mediated lignolytic systems, especially laccase-mediator-systems (lignozyme-process). J Biotechnol 53:163–202CrossRef Call HP, Mücke I (1997) History, overview, and applications of mediated lignolytic systems, especially laccase-mediator-systems (lignozyme-process). J Biotechnol 53:163–202CrossRef
go back to reference Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martı́nez MJ, Martı́nez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330. doi:10.1074/jbc.274.15.10324 CrossRef Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martı́nez MJ, Martı́nez AT (1999) Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J Biol Chem 274:10324–10330. doi:10.​1074/​jbc.​274.​15.​10324 CrossRef
go back to reference Campbell MM, Sederoff RR (1996) Variation in lignin content and composition—Mechanism of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13 Campbell MM, Sederoff RR (1996) Variation in lignin content and composition—Mechanism of control and implications for the genetic improvement of plants. Plant Physiol 110:3–13
go back to reference Chen CL, Chang H, Kirk TK (1983) Carboxylic-acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete-chrysosporium. J Wood Chem Technol 3:35–57CrossRef Chen CL, Chang H, Kirk TK (1983) Carboxylic-acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete-chrysosporium. J Wood Chem Technol 3:35–57CrossRef
go back to reference Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450 Collins PJ, Dobson ADW (1997) Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 63:3444–3450
go back to reference Cui Z, Shi J, Wan C, Li Y (2012) Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresour Technol 109:98–104CrossRef Cui Z, Shi J, Wan C, Li Y (2012) Comparison of alkaline- and fungi-assisted wet-storage of corn stover. Bioresour Technol 109:98–104CrossRef
go back to reference Dhawale SS (1993) Is an activator protein-2-like transcription factor involved in regulating gene-expression during nitrogen limitation in fungi. Appl Environ Microbiol 59:2335–2338 Dhawale SS (1993) Is an activator protein-2-like transcription factor involved in regulating gene-expression during nitrogen limitation in fungi. Appl Environ Microbiol 59:2335–2338
go back to reference Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050CrossRef Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050CrossRef
go back to reference Digman MF, Shinners KJ, Casler MD, Dien BS, Hatfield RD, Jung HJG, Muck RE, Weimer PJ (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 101:5305–5314CrossRef Digman MF, Shinners KJ, Casler MD, Dien BS, Hatfield RD, Jung HJG, Muck RE, Weimer PJ (2010) Optimizing on-farm pretreatment of perennial grasses for fuel ethanol production. Bioresour Technol 101:5305–5314CrossRef
go back to reference Dosoretz CG, Ward G, Hadar Y (2004) Lignin peroxidase. In: Pandey A (ed) Concise encyclopedia of bioresource technology. The Haworth Press, New York Dosoretz CG, Ward G, Hadar Y (2004) Lignin peroxidase. In: Pandey A (ed) Concise encyclopedia of bioresource technology. The Haworth Press, New York
go back to reference Doyle WA, Boldig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidases revealed by site-directed mutagenesis. Biochemistry 37:15097–15105CrossRef Doyle WA, Boldig W, Veitch NC, Piontek K, Smith AT (1998) Two substrate interaction sites in lignin peroxidases revealed by site-directed mutagenesis. Biochemistry 37:15097–15105CrossRef
go back to reference Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y, Kuwahara M (1999) Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol Lett 180:205–211CrossRef Enoki M, Watanabe T, Nakagame S, Koller K, Messner K, Honda Y, Kuwahara M (1999) Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol Lett 180:205–211CrossRef
go back to reference Eriksson KEL, Johnsrud SC, Vallander L (1983) Degradation of lignin and lignin model compounds by various mutants of the white-rot fungus Sporotrichum pulverulentum. Arch Microbiol 135:161–168CrossRef Eriksson KEL, Johnsrud SC, Vallander L (1983) Degradation of lignin and lignin model compounds by various mutants of the white-rot fungus Sporotrichum pulverulentum. Arch Microbiol 135:161–168CrossRef
go back to reference Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New YorkCrossRef Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, New YorkCrossRef
go back to reference Fanaei MA, Vaziri BM (2009) Modeling of temperature gradients in packed-bed solid-state bioreactors. Chem Eng Process 48:446–451CrossRef Fanaei MA, Vaziri BM (2009) Modeling of temperature gradients in packed-bed solid-state bioreactors. Chem Eng Process 48:446–451CrossRef
go back to reference Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of ligninperoxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328CrossRef Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of ligninperoxidase isoenzymes from Phanerochaete chrysosporium. Enzyme Microb Technol 11:322–328CrossRef
go back to reference Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12:267–271CrossRef Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12:267–271CrossRef
go back to reference Gaskell J, Stewart P, Kersten PJ, Cover SF, Reiser J, Cullen D (1994) Establishment of genetic linage by allel-specific peroxidase gene family of Phanerochaete chrysoporium. Biotechnology 12:1372–1375CrossRef Gaskell J, Stewart P, Kersten PJ, Cover SF, Reiser J, Cullen D (1994) Establishment of genetic linage by allel-specific peroxidase gene family of Phanerochaete chrysoporium. Biotechnology 12:1372–1375CrossRef
go back to reference Gianfreda L, Xu f, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J 3:1–25CrossRef Gianfreda L, Xu f, Bollag JM (1999) Laccases: a useful group of oxidoreductive enzymes. Bioremediation J 3:1–25CrossRef
go back to reference Gilardi G, Harvey PJ, Cass AEG, Palmer JM (1990) Radical intermediates in veratryl alcohol oxidation by ligninase-NMR evidence. Biochim Biophys Acta 1041:129–132CrossRef Gilardi G, Harvey PJ, Cass AEG, Palmer JM (1990) Radical intermediates in veratryl alcohol oxidation by ligninase-NMR evidence. Biochim Biophys Acta 1041:129–132CrossRef
go back to reference Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycetes Phanerochaete chrysosporium. ACS Symp Ser 389:127–140CrossRef Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by the white rot basidiomycetes Phanerochaete chrysosporium. ACS Symp Ser 389:127–140CrossRef
go back to reference Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigen H (eds) Metal ions biological systems. Marcel Dekker, New York Gold MH, Youngs HL, Sollewijn Gelpke MD (2000) Manganese peroxidase. In: Sigel A, Sigen H (eds) Metal ions biological systems. Marcel Dekker, New York
go back to reference Gómez-Toribio V, Martínez A, Martínez MJ, Guillén F (2001) Oxidation of hydroquinones by versatile ligninolytic peroxidase from Pleurotus eryngii-H2O2 generation and the influence of Mn2+. Eur J Biochem 268: 4787–4783 Gómez-Toribio V, Martínez A, Martínez MJ, Guillén F (2001) Oxidation of hydroquinones by versatile ligninolytic peroxidase from Pleurotus eryngii-H2O2 generation and the influence of Mn2+. Eur J Biochem 268: 4787–4783
go back to reference Gowthamana MK, Krishnab C, Young MM (2001) Fungal solid state fermentation—an overview. Appl Mycol Biotechnol 1:305–352CrossRef Gowthamana MK, Krishnab C, Young MM (2001) Fungal solid state fermentation—an overview. Appl Mycol Biotechnol 1:305–352CrossRef
go back to reference Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831CrossRef Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci 45:820–831CrossRef
go back to reference Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeter Biodegr 39:113–124CrossRef Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeter Biodegr 39:113–124CrossRef
go back to reference Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRef Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355CrossRef
go back to reference Hammel KE, Kalyanaraman B, Kirk TK (1986) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83:3708–3712CrossRef Hammel KE, Kalyanaraman B, Kirk TK (1986) Substrate free radicals are intermediates in ligninase catalysis. Proc Natl Acad Sci USA 83:3708–3712CrossRef
go back to reference Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281 Hammel KE, Jensen KA, Mozuch MD, Landucci LL, Tien M, Pease EA (1993) Ligninolysis by a purified lignin peroxidase. J Biol Chem 268:12274–12281
go back to reference Hammel KE, Mozuch MD, Jensen KA, Kersten PJ (1994) H2O2 recycling during oxidation of the arylglycerol β-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry 33:13349–13354CrossRef Hammel KE, Mozuch MD, Jensen KA, Kersten PJ (1994) H2O2 recycling during oxidation of the arylglycerol β-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry 33:13349–13354CrossRef
go back to reference Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Appl Environ Microbiol 18:350–357CrossRef Hatakka AI (1983) Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose. Appl Environ Microbiol 18:350–357CrossRef
go back to reference Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13:125–135CrossRef Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13:125–135CrossRef
go back to reference Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413CrossRef Have R, Teunissen PJM (2001) Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem Rev 101:3397–3413CrossRef
go back to reference Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259 Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Lundquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:5224–5259
go back to reference Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRef Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280CrossRef
go back to reference Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538 Janse BJH, Gaskell J, Akhtar M, Cullen D (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538
go back to reference Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119CrossRef Kapich AN, Jensen KA, Hammel KE (1999) Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett 461:115–119CrossRef
go back to reference Keller F, Hamilton J, Nguyen Q (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41CrossRef Keller F, Hamilton J, Nguyen Q (2003) Microbial pretreatment of biomass. Appl Biochem Biotechnol 105:27–41CrossRef
go back to reference Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87:2936–2940CrossRef Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87:2936–2940CrossRef
go back to reference Kirk TK, Cullen D (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York Kirk TK, Cullen D (1998). Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York
go back to reference Kirk TK, Farrell RL (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505CrossRef Kirk TK, Farrell RL (1987) Enzymatic combustion—the microbial-degradation of lignin. Annu Rev Microbiol 41:465–505CrossRef
go back to reference Kirk TK, Highley TL (1973) Quantitative changes in structural components of conifer woods during decay by white-rot and brown-rot fungi. Phytopathology 63:1338–1342CrossRef Kirk TK, Highley TL (1973) Quantitative changes in structural components of conifer woods during decay by white-rot and brown-rot fungi. Phytopathology 63:1338–1342CrossRef
go back to reference Kirk T, Moore W (1972) Removing lignin from wood with white-rot fungi and digestibility of resulting wood. Wood Fiber Sci 4:72–79 Kirk T, Moore W (1972) Removing lignin from wood with white-rot fungi and digestibility of resulting wood. Wood Fiber Sci 4:72–79
go back to reference Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45:485–491 Lee JW, Gwak KS, Park JY, Park MJ, Choi DH, Kwon M, Choi IG (2007) Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol 45:485–491
go back to reference Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604CrossRef Ma F, Yang N, Xu C, Yu H, Wu J, Zhang X (2010) Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresour Technol 101:9600–9604CrossRef
go back to reference Mansur M, Suarez T, Gonzalez AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Arch Biochem Biophys 64:771–774 Mansur M, Suarez T, Gonzalez AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Arch Biochem Biophys 64:771–774
go back to reference Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432CrossRef Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432CrossRef
go back to reference Membrillo I, Sanchez C, Meneses M, Favela E, Loera O (2008) Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour Technol 99:7842–7847CrossRef Membrillo I, Sanchez C, Meneses M, Favela E, Loera O (2008) Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour Technol 99:7842–7847CrossRef
go back to reference Messner K, Koller K, Wall MB, Akhtar M, Scott GM (1998) Fungal treatment or wood chips for chemical pulping. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York Messner K, Koller K, Wall MB, Akhtar M, Scott GM (1998) Fungal treatment or wood chips for chemical pulping. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York
go back to reference Mester T, Field JA (1998) Field characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRef Mester T, Field JA (1998) Field characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417CrossRef
go back to reference Millis CD, Cai DY, Stankovich MT, Tien M (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry 28:8484–8489CrossRef Millis CD, Cai DY, Stankovich MT, Tien M (1989) Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry 28:8484–8489CrossRef
go back to reference Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225CrossRef Mitchell DA, Krieger N, Stuart DM, Pandey A (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225CrossRef
go back to reference Mosier N, Wyman CE, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef Mosier N, Wyman CE, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRef
go back to reference Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. Mol Biol 354:385–402CrossRef Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. Mol Biol 354:385–402CrossRef
go back to reference Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) Lip-like genes in Phanerochaete sordida, and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663 Rajakumar S, Gaskell J, Cullen D, Lobos S, Karahanian E, Vicuna R (1996) Lip-like genes in Phanerochaete sordida, and Ceriporiopsis subvermispora, white rot fungi with no detectable lignin peroxidase activity. Appl Environ Microbiol 62:2660–2663
go back to reference Reid ID (1989) Solid-state fermentations for biological delignification. Enzyme Microb Technol 11:786–803CrossRef Reid ID (1989) Solid-state fermentations for biological delignification. Enzyme Microb Technol 11:786–803CrossRef
go back to reference Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724CrossRef Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724CrossRef
go back to reference Scott GM, Akhtar M, Lentz MJ, Swaney RE (1998) Engineering, scale-up, and economic aspects of fungal pretreatment of wood chips. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York Scott GM, Akhtar M, Lentz MJ, Swaney RE (1998) Engineering, scale-up, and economic aspects of fungal pretreatment of wood chips. In: Young RA, Akhtar M (eds) Environmental friendly technologies for the pulp and paper industry. Wiley, New York
go back to reference Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96CrossRef Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg 33:88–96CrossRef
go back to reference Shinners KJ, Binversie BN, Muck RE, Weimer P (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenerg 31:211–221CrossRef Shinners KJ, Binversie BN, Muck RE, Weimer P (2007) Comparison of wet and dry corn stover harvest and storage. Biomass Bioenerg 31:211–221CrossRef
go back to reference Shrestha P, Rasmussen M, Khanal SK, Pometto AL, van Leeuwen J (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56:3918–3924CrossRef Shrestha P, Rasmussen M, Khanal SK, Pometto AL, van Leeuwen J (2008) Solid-substrate fermentation of corn fiber by Phanerochaete chrysosporium and subsequent fermentation of hydrolysate into ethanol. J Agric Food Chem 56:3918–3924CrossRef
go back to reference Srebotnik E, Messner K, Foisner R (1988) Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete-chrysosporium. Appl Environ Microbiol 54:2608–2614 Srebotnik E, Messner K, Foisner R (1988) Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete-chrysosporium. Appl Environ Microbiol 54:2608–2614
go back to reference Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643CrossRef Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643CrossRef
go back to reference Varm A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol Rev 15:9–28CrossRef Varm A, Kolli BK, Paul J, Saxena S, König H (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol Rev 15:9–28CrossRef
go back to reference Wan C (2011) Microbial pretreatment of lignocellulosic biomass with Ceriporiopsis Subvermispora for enzymatic hydrolysis and ethanol production. Dissertation, The Ohio State University Wan C (2011) Microbial pretreatment of lignocellulosic biomass with Ceriporiopsis Subvermispora for enzymatic hydrolysis and ethanol production. Dissertation, The Ohio State University
go back to reference Wan C, Li Y (2010a) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403CrossRef Wan C, Li Y (2010a) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403CrossRef
go back to reference Wan C, Li Y (2010b) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403CrossRef Wan C, Li Y (2010b) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol 101:6398–6403CrossRef
go back to reference Wan C, Li Y (2011a) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102:7507–7512CrossRef Wan C, Li Y (2011a) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102:7507–7512CrossRef
go back to reference Wan C, Li Y (2011b) Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour Technol 102:9788–9793CrossRef Wan C, Li Y (2011b) Effect of hot water extraction and liquid hot water pretreatment on the fungal degradation of biomass feedstocks. Bioresour Technol 102:9788–9793CrossRef
go back to reference Watanabe T, Katayama S, Enoki M, Honda YH, Kuwahara M (2000) Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. Eur J Biochem 267:4222–4231CrossRef Watanabe T, Katayama S, Enoki M, Honda YH, Kuwahara M (2000) Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. Eur J Biochem 267:4222–4231CrossRef
go back to reference Wong D (2009) Structural and action mechanism of ligninolytic enzymes. Appl Biochem Biotech 157:174–209CrossRef Wong D (2009) Structural and action mechanism of ligninolytic enzymes. Appl Biochem Biotech 157:174–209CrossRef
go back to reference Xu C, Ma F, Zhang X, Chen S (2010) Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem 58:10893–10898CrossRef Xu C, Ma F, Zhang X, Chen S (2010) Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J Agric Food Chem 58:10893–10898CrossRef
go back to reference Yu H, Guo G, Zhang X, Yan K, Xu C (2009a) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175CrossRef Yu H, Guo G, Zhang X, Yan K, Xu C (2009a) The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol 100:5170–5175CrossRef
go back to reference Yu J, Zhang J, He J, Liu Z, Yu Z (2009b) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908CrossRef Yu J, Zhang J, He J, Liu Z, Yu Z (2009b) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100:903–908CrossRef
go back to reference Yu H, Du W, Zhang J, Ma F, Zhang X, Zhong W (2010) Fungal treatment of corn stalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour Technol 101:6728–6734CrossRef Yu H, Du W, Zhang J, Ma F, Zhang X, Zhong W (2010) Fungal treatment of corn stalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour Technol 101:6728–6734CrossRef
go back to reference Zadrazil F, Brunnert H (1981) Investigation of physical parameters important for the solid-state fermentation of straw by white rot fungi. Eur J Appl Microbiol Biotechnol 11:183–188CrossRef Zadrazil F, Brunnert H (1981) Investigation of physical parameters important for the solid-state fermentation of straw by white rot fungi. Eur J Appl Microbiol Biotechnol 11:183–188CrossRef
go back to reference Zhang X, Xu C, Wang H (2007a) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151CrossRef Zhang X, Xu C, Wang H (2007a) Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J Biosci Bioeng 104:149–151CrossRef
go back to reference Zhang X, Yu H, Huang H, Liu Y (2007b) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159–164CrossRef Zhang X, Yu H, Huang H, Liu Y (2007b) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeter Biodegr 60:159–164CrossRef
Metadata
Title
Solid-State Biological Pretreatment of Lignocellulosic Biomass
Authors
Caixia Wan
Yebo Li
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-6052-3_3