Skip to main content
Top
Published in: Quantum Information Processing 7/2023

01-07-2023 | Regular Article

Solving MaxCut with quantum imaginary time evolution

Authors: Rizwanul Alam, George Siopsis, Rebekah Herrman, James Ostrowski, Phillip C. Lotshaw, Travis S. Humble

Published in: Quantum Information Processing | Issue 7/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a method to solve the MaxCut problem efficiently based on quantum imaginary time evolution (QITE). We employ a linear Ansatz for unitary updates and an initial state involving no entanglement, as well as an imaginary-time-dependent Hamiltonian interpolating between a given graph and a subgraph with two edges excised. We apply the method to thousands of randomly selected graphs with up to fifty vertices. We show that our algorithm exhibits a 93% and above performance converging to the maximum solution of the MaxCut problem for all considered graphs. Our results compare favorably with the performance of classical algorithms, such as the greedy and Goemans–Williamson algorithms. We also discuss the overlap of the final state of the QITE algorithm with the ground state as a performance metric, which is a quantum feature not shared by other classical algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)ADSCrossRef Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505–510 (2019)ADSCrossRef
2.
go back to reference Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.-Y., Zhang, W.-J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Quantum computational advantage using photons. Science 370, 6523 (2020)CrossRef Zhong, H.-S., Wang, H., Deng, Y.-H., Chen, M.-C., Peng, L.-C., Luo, Y.-H., Qin, J., Wu, D., Ding, X., Hu, Y., Hu, P., Yang, X.-Y., Zhang, W.-J., Li, H., Li, Y., Jiang, X., Gan, L., Yang, G., You, L., Wang, Z., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Quantum computational advantage using photons. Science 370, 6523 (2020)CrossRef
3.
go back to reference Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the MAX-CUT problem. Optim. Methods Softw. 17(6), 1033–1058 (2002)MathSciNetCrossRefMATH Festa, P., Pardalos, P.M., Resende, M.G.C., Ribeiro, C.C.: Randomized heuristics for the MAX-CUT problem. Optim. Methods Softw. 17(6), 1033–1058 (2002)MathSciNetCrossRefMATH
4.
go back to reference Schröder, H., May, A.E., Vrt’o, I., Sýkora, O.: Approximation algorithms for the vertex bipartization problem. In: Plášil, F., Jeffery, K.G. (eds.) SOFSEM’97: Theory and Practice of Informatics, pp. 547–554 (1997). Springer, Berlin Schröder, H., May, A.E., Vrt’o, I., Sýkora, O.: Approximation algorithms for the vertex bipartization problem. In: Plášil, F., Jeffery, K.G. (eds.) SOFSEM’97: Theory and Practice of Informatics, pp. 547–554 (1997). Springer, Berlin
5.
go back to reference Kahruman, S., Kolotoglu, E., Butenko, S., Hicks, I.: On greedy construction heuristics for the max-cut problem. Int. J. Comput. Sci. Eng. 1, 04 (2007) Kahruman, S., Kolotoglu, E., Butenko, S., Hicks, I.: On greedy construction heuristics for the max-cut problem. Int. J. Comput. Sci. Eng. 1, 04 (2007)
6.
go back to reference Mathieu, C., Schudy, W.: Yet another algorithm for dense max cut: Go greedy. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 176–182, USA, (2008). Society for Industrial and Applied Mathematics Mathieu, C., Schudy, W.: Yet another algorithm for dense max cut: Go greedy. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pp. 176–182, USA, (2008). Society for Industrial and Applied Mathematics
7.
go back to reference Bian, Y., Gronskiy, A., Buhmann, J.M.: Greedy MaxCut algorithms and their information content. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015) Bian, Y., Gronskiy, A., Buhmann, J.M.: Greedy MaxCut algorithms and their information content. In: 2015 IEEE Information Theory Workshop (ITW), pp. 1–5 (2015)
8.
go back to reference Goemans, M.X., Williamson, D.P.: 879-approximation algorithms for max cut and max 2sat. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 422–431 (1994) Goemans, M.X., Williamson, D.P.: 879-approximation algorithms for max cut and max 2sat. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, pp. 422–431 (1994)
9.
10.
go back to reference Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for MaxCut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018)ADSCrossRef Wang, Z., Hadfield, S., Jiang, Z., Rieffel, E.G.: Quantum approximate optimization algorithm for MaxCut: a fermionic view. Phys. Rev. A 97(2), 022304 (2018)ADSCrossRef
11.
12.
go back to reference Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020) Zhou, L., Wang, S.-T., Choi, S., Pichler, H., Lukin, M.D.: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices. Phys. Rev. X 10, 021067 (2020)
13.
go back to reference Guerreschi, G.G., Matsuura, A.Y.: QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 6903 (2019)ADSCrossRef Guerreschi, G.G., Matsuura, A.Y.: QAOA for Max-Cut requires hundreds of qubits for quantum speed-up. Sci. Rep. 9, 6903 (2019)ADSCrossRef
14.
go back to reference Medvidović, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm. npj Quantum Inf. 7(1), 1–7 (2021)CrossRef Medvidović, M., Carleo, G.: Classical variational simulation of the quantum approximate optimization algorithm. npj Quantum Inf. 7(1), 1–7 (2021)CrossRef
15.
go back to reference Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv preprint arXiv:1812.04170 (2018) Brandão, F.G.S.L., Broughton, M., Farhi, E., Gutmann, S., Neven, H.: For fixed control parameters the quantum approximate optimization algorithm’s objective function value concentrates for typical instances. arXiv preprint arXiv:​1812.​04170 (2018)
16.
go back to reference Wurtz, J., Love, P.: Maxcut quantum approximate optimization algorithm performance guarantees for \(p>1\). Phys. Rev. A 103, 042612 (2021)ADSMathSciNetCrossRef Wurtz, J., Love, P.: Maxcut quantum approximate optimization algorithm performance guarantees for \(p>1\). Phys. Rev. A 103, 042612 (2021)ADSMathSciNetCrossRef
17.
go back to reference Shaydulin, R., Alexeev, Y.: Evaluating quantum approximate optimization algorithm: a case study. In: 2019 Tenth International Green and Sustainable Computing Conference (IGSC), pp. 1–6 (2019) Shaydulin, R., Alexeev, Y.: Evaluating quantum approximate optimization algorithm: a case study. In: 2019 Tenth International Green and Sustainable Computing Conference (IGSC), pp. 1–6 (2019)
18.
go back to reference Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419 (2018) Crooks, G.E.: Performance of the quantum approximate optimization algorithm on the maximum cut problem. arXiv preprint arXiv:​1811.​08419 (2018)
19.
go back to reference Shaydulin, R., Hadfield, S., Hogg, T., Safro, I.: Classical symmetries and the quantum approximate optimization algorithm. Quantum Inf. Process. 20(11), 359 (2021)ADSMathSciNetCrossRefMATH Shaydulin, R., Hadfield, S., Hogg, T., Safro, I.: Classical symmetries and the quantum approximate optimization algorithm. Quantum Inf. Process. 20(11), 359 (2021)ADSMathSciNetCrossRefMATH
20.
go back to reference Herrman, R., Ostrowski, J., Humble, T.S., Siopsis, G.: Lower bounds on circuit depth of the quantum approximate optimization algorithm. Quantum Inf. Process. 20(2), 1–17 (2021)MathSciNetCrossRefMATH Herrman, R., Ostrowski, J., Humble, T.S., Siopsis, G.: Lower bounds on circuit depth of the quantum approximate optimization algorithm. Quantum Inf. Process. 20(2), 1–17 (2021)MathSciNetCrossRefMATH
21.
go back to reference Akshay, V., Philathong, H., Morales, M.E.S., Biamonte, J.D.: Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020)ADSMathSciNetCrossRef Akshay, V., Philathong, H., Morales, M.E.S., Biamonte, J.D.: Reachability deficits in quantum approximate optimization. Phys. Rev. Lett. 124, 090504 (2020)ADSMathSciNetCrossRef
23.
go back to reference Pagano, G., Bapat, A., Becker, P., Collins, K.S., De, A., Hess, P.W., Kaplan, H.B., Kyprianidis, A., Tan, W.L., Baldwin, C., Brady, L.T., Deshpande, A., Liu, F., Jordan, S., Gorshkov, A.V., Monroe, C.: Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl. Acad. Sci. 117(41), 25396–25401 (2020)ADSMathSciNetCrossRef Pagano, G., Bapat, A., Becker, P., Collins, K.S., De, A., Hess, P.W., Kaplan, H.B., Kyprianidis, A., Tan, W.L., Baldwin, C., Brady, L.T., Deshpande, A., Liu, F., Jordan, S., Gorshkov, A.V., Monroe, C.: Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl. Acad. Sci. 117(41), 25396–25401 (2020)ADSMathSciNetCrossRef
24.
go back to reference Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: \(XY\)-mixers: analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101, 012320 (2020)ADSMathSciNetCrossRef Wang, Z., Rubin, N.C., Dominy, J.M., Rieffel, E.G.: \(XY\)-mixers: analytical and numerical results for the quantum alternating operator ansatz. Phys. Rev. A 101, 012320 (2020)ADSMathSciNetCrossRef
25.
go back to reference Zhu, L., Tang, H.L., Barron, G.S., Mayhall, N.J., Barnes, E., Economou, S.E.: An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:2005.10258 (2020) Zhu, L., Tang, H.L., Barron, G.S., Mayhall, N.J., Barnes, E., Economou, S.E.: An adaptive quantum approximate optimization algorithm for solving combinatorial problems on a quantum computer. arXiv preprint arXiv:​2005.​10258 (2020)
26.
go back to reference Jiang, Z., Rieffel, E.G., Wang, Z.: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017)ADSCrossRef Jiang, Z., Rieffel, E.G., Wang, Z.: Near-optimal quantum circuit for Grover’s unstructured search using a transverse field. Phys. Rev. A 95, 062317 (2017)ADSCrossRef
27.
go back to reference Bärtschi, A., Eidenbenz, S.: Grover mixers for QAOA: Shifting complexity from mixer design to state preparation. arXiv preprint arXiv:2006.00354v2 (2020) Bärtschi, A., Eidenbenz, S.: Grover mixers for QAOA: Shifting complexity from mixer design to state preparation. arXiv preprint arXiv:​2006.​00354v2 (2020)
28.
go back to reference Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator ansatz on maximum \(k\)-vertex cover. arXiv preprint arXiv:1910.13483v2 (2020) Cook, J., Eidenbenz, S., Bärtschi, A.: The quantum alternating operator ansatz on maximum \(k\)-vertex cover. arXiv preprint arXiv:​1910.​13483v2 (2020)
29.
go back to reference Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020)CrossRef Li, L., Fan, M., Coram, M., Riley, P., Leichenauer, S.: Quantum optimization with a novel Gibbs objective function and ansatz architecture search. Phys. Rev. Res. 2, 023074 (2020)CrossRef
30.
go back to reference Tate, R., Farhadi, M., Herold, C., Mohler, G., Gupta, S.: Bridging classical and quantum with SDP initialized warm-starts for QAOA. arXiv preprint arXiv:2010.14021 (2020) Tate, R., Farhadi, M., Herold, C., Mohler, G., Gupta, S.: Bridging classical and quantum with SDP initialized warm-starts for QAOA. arXiv preprint arXiv:​2010.​14021 (2020)
31.
go back to reference Herrman, R., Lotshaw, P.C., Ostrowski, J., Humble, T.S., Siopsis, G.: Multi-angle quantum approximate optimization algorithm. Sci. Rep. 12(1), 6781 (2022)ADSCrossRef Herrman, R., Lotshaw, P.C., Ostrowski, J., Humble, T.S., Siopsis, G.: Multi-angle quantum approximate optimization algorithm. Sci. Rep. 12(1), 6781 (2022)ADSCrossRef
33.
go back to reference Bapat, A., Jordan, S.P.: Approximate optimization of the MaxCut problem with a local spin algorithm. Phys. Rev. A 103, 052413 (2021)ADSMathSciNetCrossRef Bapat, A., Jordan, S.P.: Approximate optimization of the MaxCut problem with a local spin algorithm. Phys. Rev. A 103, 052413 (2021)ADSMathSciNetCrossRef
34.
go back to reference Marwaha, K.: Local classical MAX-CUT algorithm outperforms \(p=2\) QAOA on high-girth regular graphs. Quantum 5, 437 (2021)CrossRef Marwaha, K.: Local classical MAX-CUT algorithm outperforms \(p=2\) QAOA on high-girth regular graphs. Quantum 5, 437 (2021)CrossRef
35.
go back to reference Marwaha, K., Hadfield, S.: Bounds on approximating Max \(k\)XOR with quantum and classical local algorithms. Quantum 6, 757 (2022)CrossRef Marwaha, K., Hadfield, S.: Bounds on approximating Max \(k\)XOR with quantum and classical local algorithms. Quantum 6, 757 (2022)CrossRef
36.
go back to reference McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5(1), 75 (2019)ADSCrossRef McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S.C., Yuan, X.: Variational ansatz-based quantum simulation of imaginary time evolution. npj Quantum Inf. 5(1), 75 (2019)ADSCrossRef
37.
go back to reference Beach, M.J.S., Melko, R.G., Grover, T., Hsieh, T.H.: Making trotters sprint: a variational imaginary time ansatz for quantum many-body systems. Phys. Rev. B 100(9), 094434 (2019)ADSCrossRef Beach, M.J.S., Melko, R.G., Grover, T., Hsieh, T.H.: Making trotters sprint: a variational imaginary time ansatz for quantum many-body systems. Phys. Rev. B 100(9), 094434 (2019)ADSCrossRef
38.
go back to reference Love, P.J.: Cooling with imaginary time. Nat. Phys. 16(2), 130–131 (2020)CrossRef Love, P.J.: Cooling with imaginary time. Nat. Phys. 16(2), 130–131 (2020)CrossRef
39.
go back to reference Motta, M., Sun, C., Tan, A.T.K., O’Rourke, M.J., Ye, E., Minnich, A.J., Brandao, F.G.S.L., Chan, G.K.-L.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020)CrossRef Motta, M., Sun, C., Tan, A.T.K., O’Rourke, M.J., Ye, E., Minnich, A.J., Brandao, F.G.S.L., Chan, G.K.-L.: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020)CrossRef
40.
go back to reference Gomes, N., Zhang, F., Berthusen, N.F., Wang, C.-Z., Ho, K.-M., Orth, P.P., Yao, Y.: Efficient step-merged quantum imaginary time evolution algorithm for quantum chemistry. J. Chem. Theory Comput. 16(10), 6256–6266 (2020)CrossRef Gomes, N., Zhang, F., Berthusen, N.F., Wang, C.-Z., Ho, K.-M., Orth, P.P., Yao, Y.: Efficient step-merged quantum imaginary time evolution algorithm for quantum chemistry. J. Chem. Theory Comput. 16(10), 6256–6266 (2020)CrossRef
41.
go back to reference Yeter-Aydeniz, K., Pooser, R.C., Siopsis, G.: Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and lanczos algorithms. npj Quantum Inf. 6(1), 1–8 (2020)CrossRef Yeter-Aydeniz, K., Pooser, R.C., Siopsis, G.: Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and lanczos algorithms. npj Quantum Inf. 6(1), 1–8 (2020)CrossRef
42.
go back to reference Yeter-Aydeniz, K., Gard, B.T., Jakowski, J., Majumder, S., Barron, G.S., Siopsis, G., Humble, T.S., Pooser, R.C.: Benchmarking quantum chemistry computations with variational, imaginary time evolution, and Krylov space solver algorithms. Adv. Quantum Technol. 2100012 (2021) Yeter-Aydeniz, K., Gard, B.T., Jakowski, J., Majumder, S., Barron, G.S., Siopsis, G., Humble, T.S., Pooser, R.C.: Benchmarking quantum chemistry computations with variational, imaginary time evolution, and Krylov space solver algorithms. Adv. Quantum Technol. 2100012 (2021)
43.
go back to reference Barison, S., Galli, D.E., Motta, M.: Quantum simulations of molecular systems with intrinsic atomic orbitals. arXiv e-prints, page arXiv:2011.08137 November (2020) Barison, S., Galli, D.E., Motta, M.: Quantum simulations of molecular systems with intrinsic atomic orbitals. arXiv e-prints, page arXiv:​2011.​08137 November (2020)
44.
go back to reference Kamakari, H., Sun, S.-N., Motta, M., Minnich, A.J.: Digital quantum simulation of open quantum systems using quantum imaginary time evolution. arXiv preprint arXiv:2104.07823 (2021) Kamakari, H., Sun, S.-N., Motta, M., Minnich, A.J.: Digital quantum simulation of open quantum systems using quantum imaginary time evolution. arXiv preprint arXiv:​2104.​07823 (2021)
45.
go back to reference Ville, J.-L., Morvan, A., Hashim, A., Naik, R.K., Mitchell, B., Kreikebaum, J.-M., O’Brien, K.P., Wallman, J.J., Hincks, I.: Joseph Emerson, et al. Leveraging randomized compiling for the qite algorithm. arXiv preprint arXiv:2104.08785 (2021) Ville, J.-L., Morvan, A., Hashim, A., Naik, R.K., Mitchell, B., Kreikebaum, J.-M., O’Brien, K.P., Wallman, J.J., Hincks, I.: Joseph Emerson, et al. Leveraging randomized compiling for the qite algorithm. arXiv preprint arXiv:​2104.​08785 (2021)
46.
go back to reference Cao, C., An, Z., Hou, S.-Y., Zhou, D.L., Zeng, B.: Quantum imaginary time evolution steered by reinforcement learning (2021) Cao, C., An, Z., Hou, S.-Y., Zhou, D.L., Zeng, B.: Quantum imaginary time evolution steered by reinforcement learning (2021)
47.
go back to reference Nishi, H., Kosugi, T., Matsushita, Y.: Implementation of quantum imaginary-time evolution method on NISQ devices by introducing nonlocal approximation. npj Quantum Inf. 7(1), 85 (2021)ADSCrossRef Nishi, H., Kosugi, T., Matsushita, Y.: Implementation of quantum imaginary-time evolution method on NISQ devices by introducing nonlocal approximation. npj Quantum Inf. 7(1), 85 (2021)ADSCrossRef
48.
go back to reference Lin, S.-H., Dilip, R., Green, A.G., Smith, A., Pollmann, F.: Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021)CrossRef Lin, S.-H., Dilip, R., Green, A.G., Smith, A., Pollmann, F.: Real- and imaginary-time evolution with compressed quantum circuits. PRX Quantum 2, 010342 (2021)CrossRef
49.
go back to reference Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12(2), 34 (2019)MathSciNetCrossRefMATH Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12(2), 34 (2019)MathSciNetCrossRefMATH
Metadata
Title
Solving MaxCut with quantum imaginary time evolution
Authors
Rizwanul Alam
George Siopsis
Rebekah Herrman
James Ostrowski
Phillip C. Lotshaw
Travis S. Humble
Publication date
01-07-2023
Publisher
Springer US
Published in
Quantum Information Processing / Issue 7/2023
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-023-04045-7

Other articles of this Issue 7/2023

Quantum Information Processing 7/2023 Go to the issue