Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 6/2019

01-11-2019

Some Exact Solutions to the Problem of a Liquid Flow in a Contracting Elastic Vessel

Authors: A. S. Mozokhina, S. I. Mukhin

Published in: Mathematical Models and Computer Simulations | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider some exact solutions of the hemodynamic equations in a contracting vessel in a quasi-one-dimensional approximation in relation to the problems arising in the description of the lymph flow. Solutions for the linearized problem in the case of forced small contractions of the vessel’s lumen are given. An analytical solution of a nonlinear system is obtained and studied at the dependence of the vessel’s cross section only on time. Exact solutions are reproduced in the numerical calculation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. I. Borziak, V. Ya. Bocharov, and M. R. Sapin, Human Anatomy (Meditsina, Moscow, 1993) [in Russian]. E. I. Borziak, V. Ya. Bocharov, and M. R. Sapin, Human Anatomy (Meditsina, Moscow, 1993) [in Russian].
2.
go back to reference V. M. Petrenko, Lymphatic System. Anatomy and Development (DEAN, St. Petersburg, 2010) [in Russian]. V. M. Petrenko, Lymphatic System. Anatomy and Development (DEAN, St. Petersburg, 2010) [in Russian].
3.
go back to reference N. P. Reddy, T. A. Krouskop, and P. H. Newell, Jr., “Biomechanics of a lymphatic vessel,” Blood Vessels 12, 261–278 (1975). N. P. Reddy, T. A. Krouskop, and P. H. Newell, Jr., “Biomechanics of a lymphatic vessel,” Blood Vessels 12, 261–278 (1975).
4.
go back to reference C. M. Quick, A. M. Venugopal, A. A. Gashev, D. C. Zawieja, and R. H. Stewart, “Intrinsic pump-conduit behavior of lymphangions,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007).CrossRef C. M. Quick, A. M. Venugopal, A. A. Gashev, D. C. Zawieja, and R. H. Stewart, “Intrinsic pump-conduit behavior of lymphangions,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1510–R1518 (2007).CrossRef
5.
go back to reference C. D. Bertram, C. Macaskill, and J. E. Moore, Jr., “Simulation of a chain of collapsible contracting lymphangions with progressive valve closure,” J. Biomech. Eng. 133, 011008 (2011).CrossRef C. D. Bertram, C. Macaskill, and J. E. Moore, Jr., “Simulation of a chain of collapsible contracting lymphangions with progressive valve closure,” J. Biomech. Eng. 133, 011008 (2011).CrossRef
6.
go back to reference A. J. Macdonald, K. P. Arkill, G. R. Tabor, N. G. McHale, and C. P. Winlove, “Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements,” Am. J. Physiol. Heart. Circ. Physiol. 295, 305–313 (2008).CrossRef A. J. Macdonald, K. P. Arkill, G. R. Tabor, N. G. McHale, and C. P. Winlove, “Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements,” Am. J. Physiol. Heart. Circ. Physiol. 295, 305–313 (2008).CrossRef
7.
go back to reference E. Rahbar and J. E. Moore, Jr., “A model of a radially expanding and contracting lymphangion,” J. Biomech. 44, 1001–1007 (2011).CrossRef E. Rahbar and J. E. Moore, Jr., “A model of a radially expanding and contracting lymphangion,” J. Biomech. 44, 1001–1007 (2011).CrossRef
8.
go back to reference S. Uchida and H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe,” J. Fluid Mech. 82, 371–387 (1977).MathSciNetCrossRef S. Uchida and H. Aoki, “Unsteady flows in a semi-infinite contracting or expanding pipe,” J. Fluid Mech. 82, 371–387 (1977).MathSciNetCrossRef
9.
go back to reference M. G. Blyth, P. Hall, and D. T. Papageorgiou, “Chaotic flows in pulsating cylindrical tubes: a class of exact Navier-Stokes solutions,” J. Fluid Mech. 481, 187–213 (2003).MathSciNetCrossRef M. G. Blyth, P. Hall, and D. T. Papageorgiou, “Chaotic flows in pulsating cylindrical tubes: a class of exact Navier-Stokes solutions,” J. Fluid Mech. 481, 187–213 (2003).MathSciNetCrossRef
10.
go back to reference F. M. Skalak and C. Y. Wang, “On the unsteady squeezing of a viscous fluid from a tube,” J. Austral. Math. Soc. 21, 65–74 (1979).CrossRef F. M. Skalak and C. Y. Wang, “On the unsteady squeezing of a viscous fluid from a tube,” J. Austral. Math. Soc. 21, 65–74 (1979).CrossRef
11.
go back to reference O. D. Makinde, “Collapsible tube flow: a mathematical model,” Rom. J. Phys., 493–506 (2005). O. D. Makinde, “Collapsible tube flow: a mathematical model,” Rom. J. Phys., 493–506 (2005).
12.
go back to reference D. V. Kniazev and I. Yu. Kolpakov, “The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius,” Nelin. Din. 11 (1), 89–97 (2015).CrossRef D. V. Kniazev and I. Yu. Kolpakov, “The exact solutions of the problem of a viscous fluid flow in a cylindrical domain with varying radius,” Nelin. Din. 11 (1), 89–97 (2015).CrossRef
13.
go back to reference S. A. Regirer, “Quasi-one-dimensional theory of peristaltic flows,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 89–97 (1984). S. A. Regirer, “Quasi-one-dimensional theory of peristaltic flows,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 89–97 (1984).
14.
go back to reference O. A. Dudchenko, “Peristaltic transport in biological systems: basic models and explicit asymptotic solutions,” Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation (Moscow, MFTI, 2012). O. A. Dudchenko, “Peristaltic transport in biological systems: basic models and explicit asymptotic solutions,” Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation (Moscow, MFTI, 2012).
15.
go back to reference M. V. Abakumov, N. B. Esikova, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “A difference scheme for solving hemodynamic problems on a graph,” Preprint (Dialog-MGU, Moscow, 1998). M. V. Abakumov, N. B. Esikova, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “A difference scheme for solving hemodynamic problems on a graph,” Preprint (Dialog-MGU, Moscow, 1998).
16.
go back to reference M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, and A. B. Khrulenko, “Strategy of mathematical cardiovascular system modeling,” Mat. Model. 12 (2), 106–117 (2000).MATH M. V. Abakumov, I. V. Ashmetkov, N. B. Esikova, V. B. Koshelev, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, A. P. Favorskii, and A. B. Khrulenko, “Strategy of mathematical cardiovascular system modeling,” Mat. Model. 12 (2), 106–117 (2000).MATH
17.
go back to reference I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Numerical study of the properties of a difference scheme for hemodynamic equations,” Preprint (Dialog MGU, Moscow, 1999).MATH I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Numerical study of the properties of a difference scheme for hemodynamic equations,” Preprint (Dialog MGU, Moscow, 1999).MATH
18.
go back to reference I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Analysis and comparison of some analytic and numerical solutions of hemodynamic problems,” Differ. Equat. 36, 1021–1026 (2000).CrossRef I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Analysis and comparison of some analytic and numerical solutions of hemodynamic problems,” Differ. Equat. 36, 1021–1026 (2000).CrossRef
19.
go back to reference M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “Mathematical model of the hemodynamics of the cardio-vascular system,” Differ. Equat. 33, 895–901 (1997).MathSciNetMATH M. V. Abakumov, K. V. Gavrilyuk, N. B. Esikova, A. V. Lukshin, S. I. Mukhin, N. V. Sosnin, V. F. Tishkin, and A. P. Favorskii, “Mathematical model of the hemodynamics of the cardio-vascular system,” Differ. Equat. 33, 895–901 (1997).MathSciNetMATH
20.
go back to reference A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian]. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Gas Dynamics Problems (Nauka, Moscow, 1992) [in Russian].
21.
go back to reference E. C. Dauenhauer and J. Majdalani, “Unsteady flows in semi-infinite expanding channels with wall injection,” in Proceedings of the 30th Fluid Dynamics Conference, Fluid Dynamics and Colocated Conferences,1999. E. C. Dauenhauer and J. Majdalani, “Unsteady flows in semi-infinite expanding channels with wall injection,” in Proceedings of the 30th Fluid Dynamics Conference, Fluid Dynamics and Colocated Conferences,1999.
22.
go back to reference I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Partial solutions of hemodynamic equations,” Preprint (Dialog-MGU, Moscow, 1999).MATH I. V. Ashmetkov, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii, and A. B. Khrulenko, “Partial solutions of hemodynamic equations,” Preprint (Dialog-MGU, Moscow, 1999).MATH
23.
go back to reference A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Mosk. Gos. Univ., Moscow, 1999; Dover, New York, 2011). A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Mosk. Gos. Univ., Moscow, 1999; Dover, New York, 2011).
24.
go back to reference A. S. Mozokhina and S. I. Mukhin, “Quasi-one-dimensional flow of a fluid with anisotropic viscosity in a pulsating vessel,” Differ. Equat. 54, 938–944 (2018).MathSciNetCrossRef A. S. Mozokhina and S. I. Mukhin, “Quasi-one-dimensional flow of a fluid with anisotropic viscosity in a pulsating vessel,” Differ. Equat. 54, 938–944 (2018).MathSciNetCrossRef
Metadata
Title
Some Exact Solutions to the Problem of a Liquid Flow in a Contracting Elastic Vessel
Authors
A. S. Mozokhina
S. I. Mukhin
Publication date
01-11-2019
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 6/2019
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048219060140

Other articles of this Issue 6/2019

Mathematical Models and Computer Simulations 6/2019 Go to the issue

Premium Partner