Skip to main content
Top
Published in: Acta Mechanica Sinica 5/2015

16-09-2015 | Review Paper

Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling

Author: Wei-Qiu Chen

Published in: Acta Mechanica Sinica | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Significant progress has been made in mixed boundary-value problems associated with three-dimensional (3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials. These include material anisotropy and multifield coupling, two typical characteristics of most current multifunctional materials. In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V. I. Fabrikant, whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory. We are particularly interested in crack and contact problems with certain nonlinear features. Emphasis is also placed on the coupling between the temperature field (or the like) and other physical fields (e.g., elastic, electric, and magnetic fields). We further highlight the practical significance of 3D contact solutions, in particular in applications related to modern scanning probe microscopes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005)MATHCrossRef Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005)MATHCrossRef
2.
go back to reference Brelot, M.: Potential Theory. Springer, Berlin (2010) Brelot, M.: Potential Theory. Springer, Berlin (2010)
4.
go back to reference Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)MATH Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)MATH
5.
go back to reference Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam (1966)MATH Sneddon, I.N.: Mixed Boundary Value Problems in Potential Theory. North-Holland, Amsterdam (1966)MATH
6.
go back to reference Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969)MATH Sneddon, I.N., Lowengrub, M.: Crack Problems in the Classical Theory of Elasticity. Wiley, New York (1969)MATH
7.
go back to reference Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selection of New Results. Kluwer, Dordrecht (1989)MATH Fabrikant, V.I.: Applications of Potential Theory in Mechanics: A Selection of New Results. Kluwer, Dordrecht (1989)MATH
8.
go back to reference Fabrikant, V.I.: Mixed Boundary Value Problem of Potential Theory and Their Applications in Engineering. Kluwer, Dordrecht (1991)MATH Fabrikant, V.I.: Mixed Boundary Value Problem of Potential Theory and Their Applications in Engineering. Kluwer, Dordrecht (1991)MATH
9.
go back to reference Fabrikant, V.I.: Crack and Contact Problems in Linear Theory of Elasticity. Bentham Science Publishers, Sharjah (2010) Fabrikant, V.I.: Crack and Contact Problems in Linear Theory of Elasticity. Bentham Science Publishers, Sharjah (2010)
10.
go back to reference Chen, W.Q., Ding, H.J.: Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey. J. Zhejiang Univ. Sci. 5, 1009–1021 (2004)CrossRef Chen, W.Q., Ding, H.J.: Potential theory method for 3D crack and contact problems of multi-field coupled media: A survey. J. Zhejiang Univ. Sci. 5, 1009–1021 (2004)CrossRef
11.
go back to reference Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transversely isotropy. J. Tribol. 114, 606–611 (1992)CrossRef Hanson, M.T.: The elastic field for spherical Hertzian contact including sliding friction for transversely isotropy. J. Tribol. 114, 606–611 (1992)CrossRef
12.
go back to reference Yong, Z., Hanson, M.T.: Three-dimensional crack and contact problems with a general geometric configuration. Int. J. Solids Struct. 31, 215–239 (1994)MATHCrossRef Yong, Z., Hanson, M.T.: Three-dimensional crack and contact problems with a general geometric configuration. Int. J. Solids Struct. 31, 215–239 (1994)MATHCrossRef
13.
go back to reference Chen, W.Q., Ding, H.J.: A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems. Acta Mech. Sin. 15, 52–58 (1999)CrossRef Chen, W.Q., Ding, H.J.: A penny-shaped crack in a transversely isotropic piezoelectric solid: modes II and III problems. Acta Mech. Sin. 15, 52–58 (1999)CrossRef
14.
go back to reference Chen, W.Q., Ding, H.J.: Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mech. Solida Sin. 12, 114–120 (1999) Chen, W.Q., Ding, H.J.: Indentation of a transversely isotropic piezoelectric half-space by a rigid sphere. Acta Mech. Solida Sin. 12, 114–120 (1999)
15.
go back to reference Chen, W.Q.: On piezoelastic contact problem for a smooth punch. Int. J. Solids Struct. 37, 2331–2340 (2000)MATHCrossRef Chen, W.Q.: On piezoelastic contact problem for a smooth punch. Int. J. Solids Struct. 37, 2331–2340 (2000)MATHCrossRef
16.
go back to reference Kalinin, S.V., Karapetian, E., Kachanov, M.: Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70, 184101 (2004)CrossRef Kalinin, S.V., Karapetian, E., Kachanov, M.: Nanoelectromechanics of piezoresponse force microscopy. Phys. Rev. B 70, 184101 (2004)CrossRef
17.
go back to reference Karapetian, E., Kachanov, M., Kalinin, S.V.: Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philos. Mag. 85, 1017–1051 (2005)CrossRef Karapetian, E., Kachanov, M., Kalinin, S.V.: Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Philos. Mag. 85, 1017–1051 (2005)CrossRef
18.
go back to reference Pan, E., Chen, W.Q.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York (2015)MATH Pan, E., Chen, W.Q.: Static Green’s Functions in Anisotropic Media. Cambridge University Press, New York (2015)MATH
19.
go back to reference Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)CrossRef Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. 60, 87–106 (2007)CrossRef
20.
go back to reference Ding, H.J., Chen, W.Q., Zhang, L.C.: Elasticity of Transversely Isotropic Materials. Springer, Dordrecht (2006)MATH Ding, H.J., Chen, W.Q., Zhang, L.C.: Elasticity of Transversely Isotropic Materials. Springer, Dordrecht (2006)MATH
21.
go back to reference Ding, H.J., Chen, W.Q.: Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York (2001) Ding, H.J., Chen, W.Q.: Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, New York (2001)
22.
go back to reference Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33, 2283–2298 (1996)MATHCrossRef Ding, H.J., Chen, B., Liang, J.: General solutions for coupled equations for piezoelectric media. Int. J. Solids Struct. 33, 2283–2298 (1996)MATHCrossRef
23.
go back to reference Chen, W.Q.: On the application of potential theory in piezoelasticity. J. Appl. Mech. 66, 808–810 (1999)CrossRef Chen, W.Q.: On the application of potential theory in piezoelasticity. J. Appl. Mech. 66, 808–810 (1999)CrossRef
24.
go back to reference Chen, W.Q., Lee, K.Y., Ding, H.J.: General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int. J. Eng. Sci. 42, 1361–1379 (2004)MATHCrossRef Chen, W.Q., Lee, K.Y., Ding, H.J.: General solution for transversely isotropic magneto-electro-thermo-elasticity and the potential theory method. Int. J. Eng. Sci. 42, 1361–1379 (2004)MATHCrossRef
25.
go back to reference Ding, H.J., Chen, B., Liang, J.: On the Green’s functions for two-phase transversely isotropic piezoelectric media. Int. J. Solids Struct. 34, 3041–3057 (1997)MATHCrossRef Ding, H.J., Chen, B., Liang, J.: On the Green’s functions for two-phase transversely isotropic piezoelectric media. Int. J. Solids Struct. 34, 3041–3057 (1997)MATHCrossRef
26.
go back to reference Chen, W.Q., Lim, C.W.: 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium. Int. J. Fract. 131, 231–246 (2005)MATHCrossRef Chen, W.Q., Lim, C.W.: 3D point force solution for a permeable penny-shaped crack embedded in an infinite transversely isotropic piezoelectric medium. Int. J. Fract. 131, 231–246 (2005)MATHCrossRef
27.
go back to reference Gao, C.F., Wang, M.Z.: Generalized 2D problem of piezoelectric media containing collinear cracks. Acta Mech. Sin. 15, 235–244 (1999)CrossRef Gao, C.F., Wang, M.Z.: Generalized 2D problem of piezoelectric media containing collinear cracks. Acta Mech. Sin. 15, 235–244 (1999)CrossRef
28.
go back to reference Qi, H., Fang, D.N., Yao, Z.H.: Analysis of electric boundary condition effects on crack propagation in piezoelectric ceramics. Acta Mech. Sin. 17, 59–70 (2001)CrossRef Qi, H., Fang, D.N., Yao, Z.H.: Analysis of electric boundary condition effects on crack propagation in piezoelectric ceramics. Acta Mech. Sin. 17, 59–70 (2001)CrossRef
29.
go back to reference Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)CrossRef Chen, Y.H., Lu, T.J.: Cracks and fracture in piezoelectrics. Adv. Appl. Mech. 39, 121–215 (2003)CrossRef
30.
go back to reference Huang, Z.Y., Kuang, Z.B.: A mixed electric boundary value problem for an anti-plane piezoelectric crack. Acta Mech. Solida Sin. 16, 110–115 (2003) Huang, Z.Y., Kuang, Z.B.: A mixed electric boundary value problem for an anti-plane piezoelectric crack. Acta Mech. Solida Sin. 16, 110–115 (2003)
31.
go back to reference Wang, B.L., Han, J.C., Du, S.Y.: Applicability of the crack face electrical boundary conditions in piezoelectric mechanics. Acta Mech. Solida Sin. 17, 290–296 (2004) Wang, B.L., Han, J.C., Du, S.Y.: Applicability of the crack face electrical boundary conditions in piezoelectric mechanics. Acta Mech. Solida Sin. 17, 290–296 (2004)
32.
go back to reference Li, F.X., Sun, Y., Rajapakse, R.K.N.D.: Effect of electric boundary conditions on crack propagation in ferroelectric ceramics. Acta Mech. Sin. 30, 153–160 (2014)MathSciNetCrossRef Li, F.X., Sun, Y., Rajapakse, R.K.N.D.: Effect of electric boundary conditions on crack propagation in ferroelectric ceramics. Acta Mech. Sin. 30, 153–160 (2014)MathSciNetCrossRef
33.
go back to reference Zhang, T.Y., Tong, P.: Fracture mechanics for a mode-III crack in a piezoelectric material. Int. J. Solids Struct. 33, 343–359 (1996)MATHCrossRef Zhang, T.Y., Tong, P.: Fracture mechanics for a mode-III crack in a piezoelectric material. Int. J. Solids Struct. 33, 343–359 (1996)MATHCrossRef
34.
go back to reference Benveniste, Y.: On the decay of end effects in conduction phenomena: A sandwich strip with imperfect interfaces of low or high conductivity. J. Appl. Phys. 86, 1273–1279 (1999)CrossRef Benveniste, Y.: On the decay of end effects in conduction phenomena: A sandwich strip with imperfect interfaces of low or high conductivity. J. Appl. Phys. 86, 1273–1279 (1999)CrossRef
35.
go back to reference Chen, W.Q., Shioya, T.: Fundamental solution for a penny-shaped crack in a piezoelectric medium. J. Mech. Phys. Solids 47, 1459–1475 (1999)MathSciNetMATHCrossRef Chen, W.Q., Shioya, T.: Fundamental solution for a penny-shaped crack in a piezoelectric medium. J. Mech. Phys. Solids 47, 1459–1475 (1999)MathSciNetMATHCrossRef
36.
go back to reference Li, X.F., Lee, K.Y.: Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack. J. Appl. Mech. 71, 866–878 (2005)MATHCrossRef Li, X.F., Lee, K.Y.: Three-dimensional electroelastic analysis of a piezoelectric material with a penny-shaped dielectric crack. J. Appl. Mech. 71, 866–878 (2005)MATHCrossRef
37.
go back to reference Li, X.F., Lee, K.Y.: Electro-elastic behavior induced by an external circular crack in a piezoelectric material. Int. J. Fract. 126, 17–38 (2004)MATHCrossRef Li, X.F., Lee, K.Y.: Electro-elastic behavior induced by an external circular crack in a piezoelectric material. Int. J. Fract. 126, 17–38 (2004)MATHCrossRef
38.
go back to reference Li, X.Y.: Fundamental electro-elastic field in an infinite transversely isotropic piezoelectric medium with a permeable external circular crack. Smart Mater. Struct. 21, 065019 (2012)CrossRef Li, X.Y.: Fundamental electro-elastic field in an infinite transversely isotropic piezoelectric medium with a permeable external circular crack. Smart Mater. Struct. 21, 065019 (2012)CrossRef
39.
go back to reference Chen, W.Q.: Exact solution of a semi-infinite crack in an infinite piezoelectric body. Arch. Appl. Mech. 69, 309–316 (1999)MATHCrossRef Chen, W.Q.: Exact solution of a semi-infinite crack in an infinite piezoelectric body. Arch. Appl. Mech. 69, 309–316 (1999)MATHCrossRef
40.
go back to reference Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58, 1524–1551 (2010)MathSciNetMATHCrossRef Chen, W.Q., Pan, E.N., Wang, H.M., Zhang, C.Z.: Theory of indentation on multiferroic composite materials. J. Mech. Phys. Solids 58, 1524–1551 (2010)MathSciNetMATHCrossRef
41.
go back to reference Chen, W.Q., Shioya, T., Ding, H.J.: The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. J. Appl. Mech. 66, 764–771 (1999)CrossRef Chen, W.Q., Shioya, T., Ding, H.J.: The elasto-electric field for a rigid conical punch on a transversely isotropic piezoelectric half-space. J. Appl. Mech. 66, 764–771 (1999)CrossRef
42.
go back to reference Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRef Gao, H.J., Zhang, T.Y., Tong, P.: Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491–510 (1997)CrossRef
43.
go back to reference Beom, H.G., Atluri, S.N.: Effect of electric fields on fracture behavior of ferroelectric ceramics. J. Mech. Phys. Solids 51, 1107–1125 (2003)MATHCrossRef Beom, H.G., Atluri, S.N.: Effect of electric fields on fracture behavior of ferroelectric ceramics. J. Mech. Phys. Solids 51, 1107–1125 (2003)MATHCrossRef
44.
go back to reference Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)MATHCrossRef Zhang, T.Y., Zhao, M.H., Gao, C.F.: The strip dielectric breakdown model. Int. J. Fract. 132, 311–327 (2005)MATHCrossRef
45.
go back to reference Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRef Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRef
46.
go back to reference Li, X.Y., Yang, D., Chen, W.Q., Kang, G.Z.: Penny-shaped Dugdale crack in a transversely isotropic medium. Int. J. Fract. 176, 207–214 (2012)CrossRef Li, X.Y., Yang, D., Chen, W.Q., Kang, G.Z.: Penny-shaped Dugdale crack in a transversely isotropic medium. Int. J. Fract. 176, 207–214 (2012)CrossRef
47.
go back to reference Li, X.Y., Guo, S.T., He, Q.C., Chen, W.Q.: Penny-shaped Dugdale crack in a transversely isotropic medium and under axisymmetric loading. Mech. Math. Solids 18, 246–263 (2013)CrossRef Li, X.Y., Guo, S.T., He, Q.C., Chen, W.Q.: Penny-shaped Dugdale crack in a transversely isotropic medium and under axisymmetric loading. Mech. Math. Solids 18, 246–263 (2013)CrossRef
48.
go back to reference Zhao, M.H., Shen, Y.P., Liu, G.N., Liu, Y.J.: Dugdale model solutions for a penny-shaped crack in three-dimensional transversely isotropic piezoelectric media by boundary-integral equation method. Eng. Anal. Bound. Elem. 23, 573–576 (1999)MATHCrossRef Zhao, M.H., Shen, Y.P., Liu, G.N., Liu, Y.J.: Dugdale model solutions for a penny-shaped crack in three-dimensional transversely isotropic piezoelectric media by boundary-integral equation method. Eng. Anal. Bound. Elem. 23, 573–576 (1999)MATHCrossRef
49.
50.
go back to reference Chen, S.H., Gao, H.J.: Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. Solids 55, 1001–1015 (2005)MATHCrossRef Chen, S.H., Gao, H.J.: Bio-inspired mechanics of reversible adhesion: orientation-dependent adhesion strength for non-slipping adhesive contact with transversely isotropic elastic materials. J. Mech. Phys. Solids 55, 1001–1015 (2005)MATHCrossRef
51.
go back to reference Wu, J., Kim, S., Carlson, A., Lu, C.F., Hwang, K.C., Huang, Y.G., Rogers, J.A.: Contact radius of stamps in reversible adhesion. Theor. Appl. Mech. Lett. 1, 011001 (2011)CrossRef Wu, J., Kim, S., Carlson, A., Lu, C.F., Hwang, K.C., Huang, Y.G., Rogers, J.A.: Contact radius of stamps in reversible adhesion. Theor. Appl. Mech. Lett. 1, 011001 (2011)CrossRef
52.
go back to reference Wang, J.Z., Yao, J.Y., Gao, H.J.: Specific adhesion of a soft elastic body on a wavy surface. Theor. Appl. Mech. Lett. 2, 014002 (2012)CrossRef Wang, J.Z., Yao, J.Y., Gao, H.J.: Specific adhesion of a soft elastic body on a wavy surface. Theor. Appl. Mech. Lett. 2, 014002 (2012)CrossRef
53.
go back to reference Chen, Z.R., Yu, S.W.: Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space. Compos. Sci. Technol. 65, 1372–1381 (2005) Chen, Z.R., Yu, S.W.: Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space. Compos. Sci. Technol. 65, 1372–1381 (2005)
54.
go back to reference Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)CrossRef Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)CrossRef
55.
go back to reference Chen, W.Q.: Adhesive contact between a rigid indenter and a piezoelectric half-space. In: Yang, W., Feng, X.Q., Qin, Q.H. (eds.) Advances in Damage, Fracture and Nanomechanics, pp. 58–65. Tsinghua University Press, Beijing (2009). (in Chinese) Chen, W.Q.: Adhesive contact between a rigid indenter and a piezoelectric half-space. In: Yang, W., Feng, X.Q., Qin, Q.H. (eds.) Advances in Damage, Fracture and Nanomechanics, pp. 58–65. Tsinghua University Press, Beijing (2009). (in Chinese)
56.
go back to reference Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRef Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRef
57.
go back to reference Borodich, F.M., Galanov, B.A., Keer, L.M., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 33–44 (2014)CrossRef Borodich, F.M., Galanov, B.A., Keer, L.M., Suarez-Alvarez, M.M.: The JKR-type adhesive contact problems for transversely isotropic elastic solids. Mech. Mater. 75, 33–44 (2014)CrossRef
58.
go back to reference Bui, H.D.: An integral equations method for solving the problem of a plane crack of arbitrary shape. J. Mech. Phys. Solids 25, 29–39 (1977)MathSciNetMATHCrossRef Bui, H.D.: An integral equations method for solving the problem of a plane crack of arbitrary shape. J. Mech. Phys. Solids 25, 29–39 (1977)MathSciNetMATHCrossRef
59.
go back to reference Vlassak, J.J., Ciavarella, M., Barber, J.R., Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701–1721 (2003)MATHCrossRef Vlassak, J.J., Ciavarella, M., Barber, J.R., Wang, X.: The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape. J. Mech. Phys. Solids 51, 1701–1721 (2003)MATHCrossRef
60.
go back to reference Wang, B.: Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. Int. J. Eng. Sci. 30, 781–791 (1992)MATHCrossRef Wang, B.: Three-dimensional analysis of a flat elliptical crack in a piezoelectric material. Int. J. Eng. Sci. 30, 781–791 (1992)MATHCrossRef
61.
go back to reference Fabrikant, V.I., Rubin, B.S., Karapetian, E.N.: Half-plane crack under normal load: complete solution. J. Eng. Mech. 119, 2238–2251 (1993)MATHCrossRef Fabrikant, V.I., Rubin, B.S., Karapetian, E.N.: Half-plane crack under normal load: complete solution. J. Eng. Mech. 119, 2238–2251 (1993)MATHCrossRef
62.
go back to reference Huang, Z.Y., Bao, R.H., Bian, Z.G.: The potential theory method for a half-plane crack and contact problems of piezoelectric materials. Compos. Struct. 78, 596–601 (2007)CrossRef Huang, Z.Y., Bao, R.H., Bian, Z.G.: The potential theory method for a half-plane crack and contact problems of piezoelectric materials. Compos. Struct. 78, 596–601 (2007)CrossRef
63.
go back to reference Fabrikant, V.I., Karapetian, E.N.: Elementary exact method for solving boundary-value problems of potential theory with application to half-plane crack and contact problems. Q. J. Mech. Appl. Math. 47, 159–174 (1994)MathSciNetMATHCrossRef Fabrikant, V.I., Karapetian, E.N.: Elementary exact method for solving boundary-value problems of potential theory with application to half-plane crack and contact problems. Q. J. Mech. Appl. Math. 47, 159–174 (1994)MathSciNetMATHCrossRef
64.
go back to reference Zhang, N., Gao, C.F., Jiang, Q.: Solution of a flat elliptical crack in an electrostrictive solid. Int. J. Solids Struct. 51, 786–793 (2014)CrossRef Zhang, N., Gao, C.F., Jiang, Q.: Solution of a flat elliptical crack in an electrostrictive solid. Int. J. Solids Struct. 51, 786–793 (2014)CrossRef
65.
go back to reference Zhao, M.H., Zhang, Q.Y., Pan, E., Fan, C.Y.: Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium. Eng. Fract. Mech. 131, 627–642 (2014)CrossRef Zhao, M.H., Zhang, Q.Y., Pan, E., Fan, C.Y.: Fundamental solutions and numerical modeling of an elliptical crack with polarization saturation in a transversely isotropic piezoelectric medium. Eng. Fract. Mech. 131, 627–642 (2014)CrossRef
66.
go back to reference Kassir, M.K., Sih, G.C.: Three-Dimensional Crack Problems. Noordhoff, Leyden (1975)MATH Kassir, M.K., Sih, G.C.: Three-Dimensional Crack Problems. Noordhoff, Leyden (1975)MATH
67.
go back to reference Nuller, B., Karapetian, E., Kachanov, M.: On the stress intensity factor for the elliptical crack. Int. J. Fract. 92, L17–L20 (1998)CrossRef Nuller, B., Karapetian, E., Kachanov, M.: On the stress intensity factor for the elliptical crack. Int. J. Fract. 92, L17–L20 (1998)CrossRef
68.
69.
go back to reference Hanson, M.T., Puja, I.W.: The elastic field resulting from elliptical Hertzian contact of transversely isotropic bodies: closed form solutions for normal and shear loading. J. Appl. Mech. 64, 457–465 (1997)MATHCrossRef Hanson, M.T., Puja, I.W.: The elastic field resulting from elliptical Hertzian contact of transversely isotropic bodies: closed form solutions for normal and shear loading. J. Appl. Mech. 64, 457–465 (1997)MATHCrossRef
70.
go back to reference Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for elliptical contact for transversely isotropic piezoelectric bodies. J. Appl. Mech. 66, 560–562 (1999)CrossRef Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for elliptical contact for transversely isotropic piezoelectric bodies. J. Appl. Mech. 66, 560–562 (1999)CrossRef
71.
go back to reference Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids Struct. 37, 3201–3229 (2000)MATHCrossRef Ding, H.J., Hou, P.F., Guo, F.L.: The elastic and electric fields for three-dimensional contact for transversely isotropic piezoelectric materials. Int. J. Solids Struct. 37, 3201–3229 (2000)MATHCrossRef
73.
go back to reference Dyson, F.W.: The potentials of ellipsoids of variable densities. Q. J. Pure Appl. Math. Oxford Ser. 25, 259–288 (1891)MATH Dyson, F.W.: The potentials of ellipsoids of variable densities. Q. J. Pure Appl. Math. Oxford Ser. 25, 259–288 (1891)MATH
74.
go back to reference Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space: Part I. J. Appl. Mech. 66, 612–620 (1999)CrossRef Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space: Part I. J. Appl. Mech. 66, 612–620 (1999)CrossRef
75.
go back to reference Fabrikant, V.I.: Utilization of divergent integrals and a new symbolism in crack and contact analysis. IMA J. Appl. Math. 72, 180–190 (2007)MathSciNetMATHCrossRef Fabrikant, V.I.: Utilization of divergent integrals and a new symbolism in crack and contact analysis. IMA J. Appl. Math. 72, 180–190 (2007)MathSciNetMATHCrossRef
76.
go back to reference Li, X.Y., Wu, F., Jin, X., Chen, W.Q.: 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. J. Mech. Phys. Solids 75, 1–44 (2015) Li, X.Y., Wu, F., Jin, X., Chen, W.Q.: 3D coupled field in a transversely isotropic magneto-electro-elastic half space punched by an elliptic indenter. J. Mech. Phys. Solids 75, 1–44 (2015)
77.
go back to reference Lü, C.F., Chen, W., Zhou, J.X., Qu, S.X., Chen, W.Q.: Editorial: mechanics of soft materials, structures and systems. Theor. Appl. Mech. Lett. 3, 054001 (2013)CrossRef Lü, C.F., Chen, W., Zhou, J.X., Qu, S.X., Chen, W.Q.: Editorial: mechanics of soft materials, structures and systems. Theor. Appl. Mech. Lett. 3, 054001 (2013)CrossRef
78.
go back to reference Shi, W.D., Feng, X.Q., Gao, H.J.: Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech. Sin. 22, 529–535 (2006)MATHCrossRef Shi, W.D., Feng, X.Q., Gao, H.J.: Two-dimensional model of vesicle adhesion on curved substrates. Acta Mech. Sin. 22, 529–535 (2006)MATHCrossRef
79.
go back to reference Peng, X.L., Huang, J.Y., Qin, L., Xiong, C.Y., Fang, J.: A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech. Sin. 25, 565–570 (2009)CrossRef Peng, X.L., Huang, J.Y., Qin, L., Xiong, C.Y., Fang, J.: A method to determine Young’s modulus of soft gels for cell adhesion. Acta Mech. Sin. 25, 565–570 (2009)CrossRef
80.
go back to reference Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)CrossRef Suo, Z.: Theory of dielectric elastomers. Acta Mech. Solida Sin. 23, 549–578 (2010)CrossRef
82.
go back to reference Dorfmann, A., Ogden, R.W.: Nonlinear electroelastostatics: incremental equations and stability. Int. J. Eng. Sci. 48, 1–14 (2010)MathSciNetMATHCrossRef Dorfmann, A., Ogden, R.W.: Nonlinear electroelastostatics: incremental equations and stability. Int. J. Eng. Sci. 48, 1–14 (2010)MathSciNetMATHCrossRef
83.
go back to reference Zhang, W.L., Qian, J., Chen, W.Q.: Indentation of a compressible soft electroactive half-space: some theoretical aspects. Acta Mech. Sin. 28, 1133–1142 (2012)MathSciNetMATHCrossRef Zhang, W.L., Qian, J., Chen, W.Q.: Indentation of a compressible soft electroactive half-space: some theoretical aspects. Acta Mech. Sin. 28, 1133–1142 (2012)MathSciNetMATHCrossRef
84.
go back to reference Chen, W.Q., Dai, H.H.: Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mech. Solida Sin. 25, 530–541 (2012)CrossRef Chen, W.Q., Dai, H.H.: Waves in pre-stretched incompressible soft electroactive cylinders: exact solution. Acta Mech. Solida Sin. 25, 530–541 (2012)CrossRef
85.
go back to reference Chen, W.Q.: The renaissance of continuum mechanics. J. Zhejiang Univ. Sci. A 15, 231–240 (2014)CrossRef Chen, W.Q.: The renaissance of continuum mechanics. J. Zhejiang Univ. Sci. A 15, 231–240 (2014)CrossRef
86.
go back to reference Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRef Nan, C.W., Bichurin, M.I., Dong, S.X., Viehland, D., Srinivasan, G.: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)CrossRef
87.
go back to reference Ma, J., Hu, J., Li, Z., Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)CrossRef Ma, J., Hu, J., Li, Z., Nan, C.W.: Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062–1087 (2011)CrossRef
88.
go back to reference Wang, X., Shen, Y.P.: The general solution of three-dimensional problems in magnetoelectroelastic media. Int. J. Eng. Sci. 40, 1069–1080 (2002)MathSciNetMATHCrossRef Wang, X., Shen, Y.P.: The general solution of three-dimensional problems in magnetoelectroelastic media. Int. J. Eng. Sci. 40, 1069–1080 (2002)MathSciNetMATHCrossRef
89.
go back to reference Liu, J.X., Liu, X.G., Zhao, Y.B.: Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39, 1405–1418 (2001)MATHCrossRef Liu, J.X., Liu, X.G., Zhao, Y.B.: Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci. 39, 1405–1418 (2001)MATHCrossRef
90.
go back to reference Du, J.K., Shen, Y.P., Gao, B.: Scattering of anti-plane shear waves by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Appl. Math. Mech. Eng. Ed. 25, 1344–1353 (2004)MATHCrossRef Du, J.K., Shen, Y.P., Gao, B.: Scattering of anti-plane shear waves by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Appl. Math. Mech. Eng. Ed. 25, 1344–1353 (2004)MATHCrossRef
91.
go back to reference Zhou, Z.G., Wang, B.: Dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane waves. Appl. Math. Mech. Eng. Ed. 27, 583–591 (2006)MATHCrossRef Zhou, Z.G., Wang, B.: Dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane waves. Appl. Math. Mech. Eng. Ed. 27, 583–591 (2006)MATHCrossRef
92.
go back to reference Zhang, P.W., Zhou, Z.G., Wang, B.: Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/ piezomagnetic material strips. Appl. Math. Mech. Eng. Ed. 28, 615–625 (2007)MATHCrossRef Zhang, P.W., Zhou, Z.G., Wang, B.: Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/ piezomagnetic material strips. Appl. Math. Mech. Eng. Ed. 28, 615–625 (2007)MATHCrossRef
93.
go back to reference Feng, W.J., Nie, H., Han, X.: A penny-shaped crack in a magnetoelectroelastic layer under radial shear impact loading. Acta Mech. Solida Sin. 20, 275–282 (2007)CrossRef Feng, W.J., Nie, H., Han, X.: A penny-shaped crack in a magnetoelectroelastic layer under radial shear impact loading. Acta Mech. Solida Sin. 20, 275–282 (2007)CrossRef
94.
go back to reference Fan, C.Y., Zhou, Y.H., Wang, H., Zhao, M.H.: Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech. Solida Sin. 22, 232–239 (2009)CrossRef Fan, C.Y., Zhou, Y.H., Wang, H., Zhao, M.H.: Singular behaviors of interfacial cracks in 2D magnetoelectroelastic bimaterials. Acta Mech. Solida Sin. 22, 232–239 (2009)CrossRef
95.
go back to reference Pan, S.D., Zhou, Z.G., Wu, L.Z.: Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane. Appl. Math. Mech. Eng. Ed. 34, 1201–1224 (2013)MathSciNetMATHCrossRef Pan, S.D., Zhou, Z.G., Wu, L.Z.: Basic solutions of multiple parallel symmetric mode-III cracks in functionally graded piezoelectric/piezomagnetic material plane. Appl. Math. Mech. Eng. Ed. 34, 1201–1224 (2013)MathSciNetMATHCrossRef
96.
go back to reference Tang, Y.L., Zhou, Z.G., Wu, L.Z.: The basic solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material. Acta Mech. Solida Sin. 26, 403–418 (2013)CrossRef Tang, Y.L., Zhou, Z.G., Wu, L.Z.: The basic solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material. Acta Mech. Solida Sin. 26, 403–418 (2013)CrossRef
97.
go back to reference Chen, W.Q.: Exact 3D thermoelastic solutions for a penny-shaped crack in an infinite magnetoelectric medium. Trans. Nanjing Univ. Aeronaut. Astronaut. 31, 109–117 (2014) Chen, W.Q.: Exact 3D thermoelastic solutions for a penny-shaped crack in an infinite magnetoelectric medium. Trans. Nanjing Univ. Aeronaut. Astronaut. 31, 109–117 (2014)
98.
go back to reference Gao, C.F., Kessler, H., Balke, H.: Fracture analysis of electromagnetic thermoelastic solids. Eur. J. Mech. A Solids 22, 433–442 (2003)MATHCrossRef Gao, C.F., Kessler, H., Balke, H.: Fracture analysis of electromagnetic thermoelastic solids. Eur. J. Mech. A Solids 22, 433–442 (2003)MATHCrossRef
99.
go back to reference Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mech. Sin. 22, 233–242 (2006)MATHCrossRef Wang, B.L., Han, J.C.: Discussion on electromagnetic crack face boundary conditions for the fracture mechanics of magneto-electro-elastic materials. Acta Mech. Sin. 22, 233–242 (2006)MATHCrossRef
100.
go back to reference Zhao, M.H., Yang, F., Liu, T.: Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86, 4397–4416 (2006)CrossRef Zhao, M.H., Yang, F., Liu, T.: Analysis of a penny-shaped crack in a magneto-electro-elastic medium. Philos. Mag. 86, 4397–4416 (2006)CrossRef
101.
go back to reference Hou, P.F., Leung, A.Y.T., Ding, H.J.: The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. Int. J. Solids Struct. 40, 2833–2850 (2003)MATHCrossRef Hou, P.F., Leung, A.Y.T., Ding, H.J.: The elliptical Hertzian contact of transversely isotropic magnetoelectroelastic bodies. Int. J. Solids Struct. 40, 2833–2850 (2003)MATHCrossRef
102.
go back to reference Li, X.Y., Zheng, R.F., Chen, W.Q.: Fundamental solutions to contact problems of a magneto-electro-elastic half-space indented by a semi-infinite punch. Int. J. Solids Struct. 51, 164–178 (2014)CrossRef Li, X.Y., Zheng, R.F., Chen, W.Q.: Fundamental solutions to contact problems of a magneto-electro-elastic half-space indented by a semi-infinite punch. Int. J. Solids Struct. 51, 164–178 (2014)CrossRef
103.
go back to reference Rogowski, B., Kaliński, W.: Indentation of piezoelectromagneto-elastic half- space by a truncated conical punch. Int. J. Eng. Sci. 60, 77–93 (2012)MathSciNetCrossRef Rogowski, B., Kaliński, W.: Indentation of piezoelectromagneto-elastic half- space by a truncated conical punch. Int. J. Eng. Sci. 60, 77–93 (2012)MathSciNetCrossRef
104.
go back to reference Wang, H.M., Pan, E., Sangghaleh, A., Wang, R., Han, X.: Circular loadings on the surface of an anisotropic and magnetoelectroelastic half-space. Smart Mater. Struct. 21, 075003 (2012)CrossRef Wang, H.M., Pan, E., Sangghaleh, A., Wang, R., Han, X.: Circular loadings on the surface of an anisotropic and magnetoelectroelastic half-space. Smart Mater. Struct. 21, 075003 (2012)CrossRef
105.
go back to reference Zhou, Y.T., Lee, K.Y.: Theory of sliding contact for multiferroic materials indented by a rigid punch. Int. J. Mech. Sci. 66, 156–167 (2013)CrossRef Zhou, Y.T., Lee, K.Y.: Theory of sliding contact for multiferroic materials indented by a rigid punch. Int. J. Mech. Sci. 66, 156–167 (2013)CrossRef
106.
go back to reference Elloumia, R., Guler, M.A., Kallel-Kamoun, I., El-Borgi, S.: Closed-form solutions of the frictional sliding contact problem for a magneto-electro-elastic half-plane indented by a rigid conducting punch. Int. J. Solids Struct. 50, 3778–3792 (2013)CrossRef Elloumia, R., Guler, M.A., Kallel-Kamoun, I., El-Borgi, S.: Closed-form solutions of the frictional sliding contact problem for a magneto-electro-elastic half-plane indented by a rigid conducting punch. Int. J. Solids Struct. 50, 3778–3792 (2013)CrossRef
107.
go back to reference Zhou, Y.T., Zhong, Z.: Frictional indentation of anisotropic magneto-electro- elastic materials by a rigid indenter. J. Appl. Mech. 81, 071001 (2014)CrossRef Zhou, Y.T., Zhong, Z.: Frictional indentation of anisotropic magneto-electro- elastic materials by a rigid indenter. J. Appl. Mech. 81, 071001 (2014)CrossRef
108.
go back to reference Suck, J.B., Schreiber, M., Häussler, P.: Quasicrystals: An Introduction to Structure, Physical Properties and Applications. Springer, Berlin (2010) Suck, J.B., Schreiber, M., Häussler, P.: Quasicrystals: An Introduction to Structure, Physical Properties and Applications. Springer, Berlin (2010)
109.
110.
go back to reference Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer, Berlin (2011)CrossRef Fan, T.Y.: Mathematical Theory of Elasticity of Quasicrystals and Its Applications. Springer, Berlin (2011)CrossRef
111.
go back to reference Guo, L.H., Fan, T.Y.: Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals. Appl. Math. Mech. Eng. Ed. 28, 1061–1070 (2007)MathSciNetMATHCrossRef Guo, L.H., Fan, T.Y.: Solvability on boundary-value problems of elasticity of three-dimensional quasicrystals. Appl. Math. Mech. Eng. Ed. 28, 1061–1070 (2007)MathSciNetMATHCrossRef
112.
go back to reference Guo, Y.C., Fan, T.Y.: A mode- II Griffith crack in decagonal quasicrystals. Appl. Math. Mech. Eng. Ed. 22, 1311–1317 (2001)MATHCrossRef Guo, Y.C., Fan, T.Y.: A mode- II Griffith crack in decagonal quasicrystals. Appl. Math. Mech. Eng. Ed. 22, 1311–1317 (2001)MATHCrossRef
113.
go back to reference Fan, T.Y., Tang, Z.Y., Chen, W.Q.: Theory of linear, nonlinear and dynamic fracture for quasicrystals. Eng. Fract. Mech. 82, 185–194 (2012)CrossRef Fan, T.Y., Tang, Z.Y., Chen, W.Q.: Theory of linear, nonlinear and dynamic fracture for quasicrystals. Eng. Fract. Mech. 82, 185–194 (2012)CrossRef
114.
go back to reference Zhou, W.M., Fan, T.Y.: Axisymmetric elasticity problem of cubic quasicrystal. Chin. Phys. 9, 294–303 (2000)CrossRef Zhou, W.M., Fan, T.Y.: Axisymmetric elasticity problem of cubic quasicrystal. Chin. Phys. 9, 294–303 (2000)CrossRef
115.
go back to reference Zhou, W.M., Fan, T.Y., Yin, S.Y.: Crack problem under shear loading in cubic quasicrystal. Appl. Math. Mech. Eng. Ed. 24, 720–726 (2003)MATHCrossRef Zhou, W.M., Fan, T.Y., Yin, S.Y.: Crack problem under shear loading in cubic quasicrystal. Appl. Math. Mech. Eng. Ed. 24, 720–726 (2003)MATHCrossRef
116.
go back to reference Zhou, W.M., Fan, T.Y., Yin, S.Y.: Axisymmetric contact problem of cubic quasicrystalline materials. Acta Mech. Solida Sin. 15, 68–74 (2002) Zhou, W.M., Fan, T.Y., Yin, S.Y.: Axisymmetric contact problem of cubic quasicrystalline materials. Acta Mech. Solida Sin. 15, 68–74 (2002)
117.
go back to reference Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31, 633–641 (2004)MathSciNetMATHCrossRef Chen, W.Q., Ma, Y.L., Ding, H.J.: On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies. Mech. Res. Commun. 31, 633–641 (2004)MathSciNetMATHCrossRef
119.
go back to reference Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Eur. Phys. J. B 21, 39–44 (2001)CrossRef Peng, Y.Z., Fan, T.Y.: Crack and indentation problems for one-dimensional hexagonal quasicrystals. Eur. Phys. J. B 21, 39–44 (2001)CrossRef
120.
go back to reference Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)MathSciNetMATHCrossRef Li, X.Y., Li, P.D., Wu, T.H., Shi, M.X., Zhu, Z.W.: Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Phys. Lett. A 378, 826–834 (2014)MathSciNetMATHCrossRef
121.
go back to reference Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philos. Mag. 93, 858–882 (2013)CrossRef Wu, Y.F., Chen, W.Q., Li, X.Y.: Indentation on one-dimensional hexagonal quasicrystals: general theory and complete exact solutions. Philos. Mag. 93, 858–882 (2013)CrossRef
122.
go back to reference Li, X.Y.: Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 51, 1442–1455 (2014)CrossRef Li, X.Y.: Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack. Int. J. Solids Struct. 51, 1442–1455 (2014)CrossRef
123.
go back to reference Gao, Y., Zhao, B.S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys. Stat. Sol. (b) 243, 4007–4019 (2006)CrossRef Gao, Y., Zhao, B.S.: A general treatment of three-dimensional elasticity of quasicrystals by an operator method. Phys. Stat. Sol. (b) 243, 4007–4019 (2006)CrossRef
124.
go back to reference Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Mod. 33, 3382–3391 (2009)MathSciNetMATHCrossRef Gao, Y., Zhao, B.S.: General solutions of three-dimensional problems for two-dimensional quasicrystals. Appl. Math. Mod. 33, 3382–3391 (2009)MathSciNetMATHCrossRef
125.
go back to reference Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92, 4334–4353 (2012)CrossRef Gao, Y., Ricoeur, A.: Three-dimensional analysis of a spheroidal inclusion in a two-dimensional quasicrystal body. Philos. Mag. 92, 4334–4353 (2012)CrossRef
126.
go back to reference Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)CrossRef Li, X.Y., Wu, F., Wu, Y.F., Chen, W.Q.: Indentation on two-dimensional hexagonal quasicrystals. Mech. Mater. 76, 121–136 (2014)CrossRef
127.
go back to reference Wang, T.C., Han, X.L.: Crack problems of piezoelectric materials. Acta Mech. Solida Sin. 12, 95–105 (1999) Wang, T.C., Han, X.L.: Crack problems of piezoelectric materials. Acta Mech. Solida Sin. 12, 95–105 (1999)
128.
go back to reference Fang, D.N., Soh, A.K., Liu, J.X.: Electromechanical deformation and fracture of piezoelectric-ferroelectric materials. Acta Mech. Sin. 17, 193–213 (2001)CrossRef Fang, D.N., Soh, A.K., Liu, J.X.: Electromechanical deformation and fracture of piezoelectric-ferroelectric materials. Acta Mech. Sin. 17, 193–213 (2001)CrossRef
129.
go back to reference Gao, C.F., Balke, H.: Green’s functions of internal electrodes between two dissimilar piezoelectric media. Appl. Math. Mech. Eng. Ed. 26, 234–241 (2005)MATHCrossRef Gao, C.F., Balke, H.: Green’s functions of internal electrodes between two dissimilar piezoelectric media. Appl. Math. Mech. Eng. Ed. 26, 234–241 (2005)MATHCrossRef
130.
go back to reference Li, Q., Chen, Y.H.: Analysis of crack-tip singularities for an interfacial permeable crack in metal-piezoelectric bimaterials. Acta Mech. Solida Sin. 20, 247–257 (2007)CrossRef Li, Q., Chen, Y.H.: Analysis of crack-tip singularities for an interfacial permeable crack in metal-piezoelectric bimaterials. Acta Mech. Solida Sin. 20, 247–257 (2007)CrossRef
131.
go back to reference Li, Q., Chen, Y.H.: Analysis of a permeable interface crack in elastic dielectric-piezoelectric bimaterials. Acta Mech. Sin. 23, 681–687 (2007)MATHCrossRef Li, Q., Chen, Y.H.: Analysis of a permeable interface crack in elastic dielectric-piezoelectric bimaterials. Acta Mech. Sin. 23, 681–687 (2007)MATHCrossRef
132.
go back to reference Wang, B.L., Noda, N., Han, J.C., Du, S.Y.: A penny-shaped crack in a transversely isotropic piezoelectric layer. Eur. J. Mech. A Solids 20, 997–1005 (2001)MATHCrossRef Wang, B.L., Noda, N., Han, J.C., Du, S.Y.: A penny-shaped crack in a transversely isotropic piezoelectric layer. Eur. J. Mech. A Solids 20, 997–1005 (2001)MATHCrossRef
133.
go back to reference Yang, J.H., Lee, K.Y.: Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mech. 148, 187–197 (2001)MATHCrossRef Yang, J.H., Lee, K.Y.: Penny shaped crack in a three-dimensional piezoelectric strip under in-plane normal loadings. Acta Mech. 148, 187–197 (2001)MATHCrossRef
134.
go back to reference Li, X.F., Lee, K.Y.: Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer. J. Mech. Phys. Solids 52, 2079–2100 (2004)MathSciNetMATHCrossRef Li, X.F., Lee, K.Y.: Effects of electric field on crack growth for a penny-shaped dielectric crack in a piezoelectric layer. J. Mech. Phys. Solids 52, 2079–2100 (2004)MathSciNetMATHCrossRef
135.
go back to reference Wang, B.L., Sun, Y.G., Zhu, Y.: Fracture of a finite piezoelectric layer with a penny-shaped crack. Int. J. Fract. 172, 19–39 (2011) Wang, B.L., Sun, Y.G., Zhu, Y.: Fracture of a finite piezoelectric layer with a penny-shaped crack. Int. J. Fract. 172, 19–39 (2011)
136.
go back to reference Zhao, M.H., Li, D.X., Shen, Y.P.: Interfacial crack analysis in three-dimensional transversely isotropic bi-materials by boundary integral equation method. Appl. Math. Mech. Eng. Ed. 26, 1539–1546 (2005)MATHCrossRef Zhao, M.H., Li, D.X., Shen, Y.P.: Interfacial crack analysis in three-dimensional transversely isotropic bi-materials by boundary integral equation method. Appl. Math. Mech. Eng. Ed. 26, 1539–1546 (2005)MATHCrossRef
137.
go back to reference Wang, J.H., Chen, C.Q., Lu, T.J.: Indentation response of piezoelectric films. J. Mech. Phys. Solids 56, 3331–3351 (2008)MATHCrossRef Wang, J.H., Chen, C.Q., Lu, T.J.: Indentation response of piezoelectric films. J. Mech. Phys. Solids 56, 3331–3351 (2008)MATHCrossRef
138.
go back to reference Wu, Y.F., Yu, H.Y., Chen, W.Q.: Mechanics of indentation for piezoelectric thin films on elastic substrate. Int. J. Solids Struct. 49, 95–110 (2012)CrossRef Wu, Y.F., Yu, H.Y., Chen, W.Q.: Mechanics of indentation for piezoelectric thin films on elastic substrate. Int. J. Solids Struct. 49, 95–110 (2012)CrossRef
139.
go back to reference Wu, Y.F., Yu, H.Y., Chen, W.Q.: Indentation responses of piezoelectric layered half-space. Smart Mater. Struct. 22, 015007 (2013)CrossRef Wu, Y.F., Yu, H.Y., Chen, W.Q.: Indentation responses of piezoelectric layered half-space. Smart Mater. Struct. 22, 015007 (2013)CrossRef
140.
go back to reference Fabrikant, V.I.: Application of the generalized images method to contact problems for a transversely isotropic elastic layer. J. Strain Anal. 39, 55–70 (2004)CrossRef Fabrikant, V.I.: Application of the generalized images method to contact problems for a transversely isotropic elastic layer. J. Strain Anal. 39, 55–70 (2004)CrossRef
141.
go back to reference Fabrikant, V.I.: Tangential contact problem for a transversely isotropic elastic layer bonded to a rigid foundation. Math. Proc. Camb. Philos. Soc. 138, 173–191 (2005)MathSciNetMATHCrossRef Fabrikant, V.I.: Tangential contact problem for a transversely isotropic elastic layer bonded to a rigid foundation. Math. Proc. Camb. Philos. Soc. 138, 173–191 (2005)MathSciNetMATHCrossRef
142.
go back to reference Fabrikant, V.I.: Elementary solution of contact problems for a transversely isotropic elastic layer bonded to a rigid foundation. Z. Angew. Math. Phys. 57, 464–490 (2006)MathSciNetMATHCrossRef Fabrikant, V.I.: Elementary solution of contact problems for a transversely isotropic elastic layer bonded to a rigid foundation. Z. Angew. Math. Phys. 57, 464–490 (2006)MathSciNetMATHCrossRef
143.
go back to reference Fabrikant, V.I.: Solution of contact problems for a transversely isotropic elastic layer bonded to an elastic half-space. Proc. IMechE Part C. J. Mech. Eng. Sci. 223, 2487–2499 (2009)CrossRef Fabrikant, V.I.: Solution of contact problems for a transversely isotropic elastic layer bonded to an elastic half-space. Proc. IMechE Part C. J. Mech. Eng. Sci. 223, 2487–2499 (2009)CrossRef
144.
go back to reference Fabrikant, V.I.: Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space. Arch. Appl. Mech. 81, 957–974 (2011)MATHCrossRef Fabrikant, V.I.: Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space. Arch. Appl. Mech. 81, 957–974 (2011)MATHCrossRef
145.
go back to reference Fabrikant, V.I.: Contact problems for several transversely isotropic elastic layers on a smooth elastic half-space. Meccanica 46, 1239–1263 (2011)MathSciNetMATHCrossRef Fabrikant, V.I.: Contact problems for several transversely isotropic elastic layers on a smooth elastic half-space. Meccanica 46, 1239–1263 (2011)MathSciNetMATHCrossRef
146.
go back to reference Fabrikant, V.I.: Tangential contact problems for several transversely isotropic elastic layers bonded to an elastic foundation. J. Eng. Math. 81, 93–126 (2013)MathSciNetCrossRef Fabrikant, V.I.: Tangential contact problems for several transversely isotropic elastic layers bonded to an elastic foundation. J. Eng. Math. 81, 93–126 (2013)MathSciNetCrossRef
148.
go back to reference Hu, K.Q., Zhong, Z., Jin, B.: Electroelastic intensification near anti-plane crack in a functionally gradient piezoelectric ceramic strip. Acta Mech. Solida Sin. 16, 197–204 (2003) Hu, K.Q., Zhong, Z., Jin, B.: Electroelastic intensification near anti-plane crack in a functionally gradient piezoelectric ceramic strip. Acta Mech. Solida Sin. 16, 197–204 (2003)
149.
go back to reference Feng, W.J., Li, X.G., Wang, S.D.: Torsional impact response of a penny-shaped crack in a functional graded strip. Appl. Math. Mech. Eng. Ed. 25, 1398–1404 (2004)MATHCrossRef Feng, W.J., Li, X.G., Wang, S.D.: Torsional impact response of a penny-shaped crack in a functional graded strip. Appl. Math. Mech. Eng. Ed. 25, 1398–1404 (2004)MATHCrossRef
150.
go back to reference Hao, T.H.: Crack tip field in functionally gradient material with exponential variation of elastic constants in two directions. Acta Mech. Sin. 21, 601–607 (2005)MATHCrossRef Hao, T.H.: Crack tip field in functionally gradient material with exponential variation of elastic constants in two directions. Acta Mech. Sin. 21, 601–607 (2005)MATHCrossRef
151.
go back to reference Volkov, S., Aizikovich, S., Wang, Y.S., Fedotov, I.: Analytical solution of axisymmetric contact problem about indentation of a circular indenter into a soft functionally graded elastic layer. Acta Mech. Sin. 29, 196–201 (2013)MathSciNetCrossRef Volkov, S., Aizikovich, S., Wang, Y.S., Fedotov, I.: Analytical solution of axisymmetric contact problem about indentation of a circular indenter into a soft functionally graded elastic layer. Acta Mech. Sin. 29, 196–201 (2013)MathSciNetCrossRef
152.
go back to reference Ma, J., Ke, L.L., Wang, Y.S.: Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. Int. J. Solids Struct. 51, 2791–2806 (2014)CrossRef Ma, J., Ke, L.L., Wang, Y.S.: Frictionless contact of a functionally graded magneto-electro-elastic layered half-plane under a conducting punch. Int. J. Solids Struct. 51, 2791–2806 (2014)CrossRef
153.
go back to reference Sankar, T.S., Fabrikant, V.I.: Asymmetric contact problem including wear for nonhomogeneous half space. J. Appl. Math. Mech. 49, 43–46 (1982)MathSciNetMATH Sankar, T.S., Fabrikant, V.I.: Asymmetric contact problem including wear for nonhomogeneous half space. J. Appl. Math. Mech. 49, 43–46 (1982)MathSciNetMATH
154.
go back to reference Fabrikant, V.I., Sankar, T.S.: On contact problems in an inhomogeneous half-space. Int. J. Solids Struct. 20, 159–166 (1984)MATHCrossRef Fabrikant, V.I., Sankar, T.S.: On contact problems in an inhomogeneous half-space. Int. J. Solids Struct. 20, 159–166 (1984)MATHCrossRef
155.
go back to reference Li, X.Y., Chen, W.Q., Wang, H.Y., Wang, G.D.: Crack tip plasticity of a penny-shaped Dugdale crack in a power-law graded elastic infinite medium. Eng. Fract. Mech. 88, 1–14 (2012)MathSciNetCrossRef Li, X.Y., Chen, W.Q., Wang, H.Y., Wang, G.D.: Crack tip plasticity of a penny-shaped Dugdale crack in a power-law graded elastic infinite medium. Eng. Fract. Mech. 88, 1–14 (2012)MathSciNetCrossRef
156.
157.
go back to reference Tao, F.M., Tang, R.J.: The crack-inclusion interaction and the analysis of singularity for the horizontal contact. Appl. Math. Mech. Eng. Ed. 22, 547–556 (2001)MATHCrossRef Tao, F.M., Tang, R.J.: The crack-inclusion interaction and the analysis of singularity for the horizontal contact. Appl. Math. Mech. Eng. Ed. 22, 547–556 (2001)MATHCrossRef
158.
go back to reference Zhong, Z.: Analysis of a partially debonded elliptic inhomogeneity in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 25, 445–457 (2004)MATHCrossRef Zhong, Z.: Analysis of a partially debonded elliptic inhomogeneity in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 25, 445–457 (2004)MATHCrossRef
159.
go back to reference Hu, Y.T., Li, G.Q., Jiang, S.N., Hu, H.P., Yang, J.S.: Interaction of electric charges in a piezoelectric with rigid external cracks. Appl. Math. Mech. Eng. Ed. 26, 996–1006 (2005)MATHCrossRef Hu, Y.T., Li, G.Q., Jiang, S.N., Hu, H.P., Yang, J.S.: Interaction of electric charges in a piezoelectric with rigid external cracks. Appl. Math. Mech. Eng. Ed. 26, 996–1006 (2005)MATHCrossRef
160.
go back to reference Fang, Q.H., Liu, Y.W.: Elastic interaction between wedge disclination dipole and internal crack. Appl. Math. Mech. Eng. Ed. 27, 1239–1247 (2006)MATHCrossRef Fang, Q.H., Liu, Y.W.: Elastic interaction between wedge disclination dipole and internal crack. Appl. Math. Mech. Eng. Ed. 27, 1239–1247 (2006)MATHCrossRef
161.
go back to reference Zhou, Z.G., Wang, B.: Basic solution of two parallel non-symmetric permeable cracks in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 28, 417–428 (2007)MathSciNetMATHCrossRef Zhou, Z.G., Wang, B.: Basic solution of two parallel non-symmetric permeable cracks in piezoelectric materials. Appl. Math. Mech. Eng. Ed. 28, 417–428 (2007)MathSciNetMATHCrossRef
162.
go back to reference Xiao, W.S., Xie, C., Liu, Y.W.: Interaction between heat dipole and circular interfacial crack. Appl. Math. Mech. Eng. Ed. 30, 1221–1232 (2009)MathSciNetMATHCrossRef Xiao, W.S., Xie, C., Liu, Y.W.: Interaction between heat dipole and circular interfacial crack. Appl. Math. Mech. Eng. Ed. 30, 1221–1232 (2009)MathSciNetMATHCrossRef
163.
go back to reference Xu, C.H., Qin, T.Y., Yuan, L., Noda, N.A.: Analysis of multiple interfacial cracks in three-dimensional bimaterials using hypersingular integro-differential equation method. Appl. Math. Mech. Eng. Ed. 30, 293–301 (2009)MATHCrossRef Xu, C.H., Qin, T.Y., Yuan, L., Noda, N.A.: Analysis of multiple interfacial cracks in three-dimensional bimaterials using hypersingular integro-differential equation method. Appl. Math. Mech. Eng. Ed. 30, 293–301 (2009)MATHCrossRef
164.
go back to reference Karapetian, E., Hanson, T.: Crack opening displacements and stress intensity factors caused by a concentrated load outside a circular crack. Int. J. Solids Struct. 31, 2035–2052 (1994)MATHCrossRef Karapetian, E., Hanson, T.: Crack opening displacements and stress intensity factors caused by a concentrated load outside a circular crack. Int. J. Solids Struct. 31, 2035–2052 (1994)MATHCrossRef
165.
go back to reference Karapetian, E., Kachanov, M.: Three-dimensional interactions of a circular crack with dipoles, centers of dilatation and moments. Int. J. Solids Struct. 33, 3951–3967 (1996)MATHCrossRef Karapetian, E., Kachanov, M.: Three-dimensional interactions of a circular crack with dipoles, centers of dilatation and moments. Int. J. Solids Struct. 33, 3951–3967 (1996)MATHCrossRef
166.
go back to reference Kachanov, M., Karapetian, E.: Three-dimensional interactions of a half-plane crack with point forces, dipoles and moments. Int. J. Solids Struct. 34, 4101–4125 (1997)MATHCrossRef Kachanov, M., Karapetian, E.: Three-dimensional interactions of a half-plane crack with point forces, dipoles and moments. Int. J. Solids Struct. 34, 4101–4125 (1997)MATHCrossRef
167.
go back to reference Karapetian, E., Kachanov, M.: Green’s functions for the isotropic or transversely isotropic space containing a circular crack. Acta Mech. 126, 169–187 (1998)MATHCrossRef Karapetian, E., Kachanov, M.: Green’s functions for the isotropic or transversely isotropic space containing a circular crack. Acta Mech. 126, 169–187 (1998)MATHCrossRef
168.
go back to reference Xiao, Z.M., Fan, H., Zhang, T.L.: Stress intensity factors of two skew-parallel penny-shaped cracks in a 3-D transversely isotropic solid. Mech. Mater. 20, 261–272 (1995)CrossRef Xiao, Z.M., Fan, H., Zhang, T.L.: Stress intensity factors of two skew-parallel penny-shaped cracks in a 3-D transversely isotropic solid. Mech. Mater. 20, 261–272 (1995)CrossRef
169.
go back to reference Zhan, S.G., Wang, T.C.: Interactions of penny-shaped cracks in three- dimensional solids. Acta Mech. Sin. 22, 341–353 (2006)MATHCrossRef Zhan, S.G., Wang, T.C.: Interactions of penny-shaped cracks in three- dimensional solids. Acta Mech. Sin. 22, 341–353 (2006)MATHCrossRef
170.
go back to reference Fabrikant, V.I.: Interaction of an arbitrary force with a flexible punch or with a penny-shaped crack. Q. J. Mech. Appl. Math. 50, 303–319 (1997)MathSciNetMATHCrossRef Fabrikant, V.I.: Interaction of an arbitrary force with a flexible punch or with a penny-shaped crack. Q. J. Mech. Appl. Math. 50, 303–319 (1997)MathSciNetMATHCrossRef
171.
go back to reference Hou, P.F., Ding, H.J., Guan, F.L.: Circular crack in a transversely isotropic piezoelectric space under point forces and point charges. Acta Mech. Sin. 18, 159–169 (2002)CrossRef Hou, P.F., Ding, H.J., Guan, F.L.: Circular crack in a transversely isotropic piezoelectric space under point forces and point charges. Acta Mech. Sin. 18, 159–169 (2002)CrossRef
172.
go back to reference Hou, P.F., Pan, X.P., Ding, H.J.: Three-dimensional interactions of a half-plane crack in a transversely isotropic piezoelectric space with resultant sources. Acta Mech. Solida Sin. 18, 265–271 (2005) Hou, P.F., Pan, X.P., Ding, H.J.: Three-dimensional interactions of a half-plane crack in a transversely isotropic piezoelectric space with resultant sources. Acta Mech. Solida Sin. 18, 265–271 (2005)
173.
go back to reference Hou, P.F., Ding, H.J., Leung, A.Y.T.: Three-dimensional interactions of circular crack in transversely isotropic piezoelectric space with resultant sources. Appl. Math. Mech. Eng. Ed. 27, 1439–1449 (2006)MATHCrossRef Hou, P.F., Ding, H.J., Leung, A.Y.T.: Three-dimensional interactions of circular crack in transversely isotropic piezoelectric space with resultant sources. Appl. Math. Mech. Eng. Ed. 27, 1439–1449 (2006)MATHCrossRef
174.
go back to reference Goryacheva, I.G.: Mechanics of discrete contact. Tribol. Int. 39, 381–386 (2006)CrossRef Goryacheva, I.G.: Mechanics of discrete contact. Tribol. Int. 39, 381–386 (2006)CrossRef
175.
go back to reference Bedoidze, M.V., Pozharskii, D.A.: The interaction of punches on a transversely isotropic half-space. J. Appl. Math. Mech. 78, 409–414 (2014)MathSciNetCrossRef Bedoidze, M.V., Pozharskii, D.A.: The interaction of punches on a transversely isotropic half-space. J. Appl. Math. Mech. 78, 409–414 (2014)MathSciNetCrossRef
176.
go back to reference Hetnarski, R.B., Eslami, M.R.: Thermal Stresses—Advanced Theory and Applications. Springer, Berlin (2009)MATH Hetnarski, R.B., Eslami, M.R.: Thermal Stresses—Advanced Theory and Applications. Springer, Berlin (2009)MATH
178.
go back to reference Barber, J.R.: Elasticity, 3rd revised ed. Springer, Dordrecht (2010) Barber, J.R.: Elasticity, 3rd revised ed. Springer, Dordrecht (2010)
179.
go back to reference Chen, W.Q., Ding, H.J., Ling, D.S.: Thermoelastic field of a transversely isotropic elastic medium containing a penny-shaped crack: exact fundamental solution. Int. J. Solids Struct. 41, 69–83 (2004)MATHCrossRef Chen, W.Q., Ding, H.J., Ling, D.S.: Thermoelastic field of a transversely isotropic elastic medium containing a penny-shaped crack: exact fundamental solution. Int. J. Solids Struct. 41, 69–83 (2004)MATHCrossRef
180.
go back to reference Chen, W.Q.: On the general solution for piezothermoelasticity for transverse isotropy with application. J. Appl. Mech. 67, 705–711 (2000)MathSciNetMATHCrossRef Chen, W.Q.: On the general solution for piezothermoelasticity for transverse isotropy with application. J. Appl. Mech. 67, 705–711 (2000)MathSciNetMATHCrossRef
181.
go back to reference Chen, W.Q., Lim, C.W., Ding, H.J.: Point temperature solution for a penny- shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Eng. Anal. Bound. Elem. 29, 524–532 (2005)MATHCrossRef Chen, W.Q., Lim, C.W., Ding, H.J.: Point temperature solution for a penny- shaped crack in an infinite transversely isotropic thermo-piezo-elastic medium. Eng. Anal. Bound. Elem. 29, 524–532 (2005)MATHCrossRef
182.
go back to reference Barber, J.R.: Steady-state thermal stresses caused by an imperfectly conducting penny-shaped crack in an elastic solid. J. Therm. Stresses 3, 77–83 (1980)CrossRef Barber, J.R.: Steady-state thermal stresses caused by an imperfectly conducting penny-shaped crack in an elastic solid. J. Therm. Stresses 3, 77–83 (1980)CrossRef
183.
go back to reference Shen, S.P., Kuang, Z.B.: Interface crack in bi-piezothermoelastic media. Acta Mech. Solida Sin. 9, 13–26 (1996) Shen, S.P., Kuang, Z.B.: Interface crack in bi-piezothermoelastic media. Acta Mech. Solida Sin. 9, 13–26 (1996)
184.
go back to reference Xu, C.H., Qin, T.Y., Hua, Y.L.: Singular integral equations and boundary element method of cracks in thermally stressed planar solids. Appl. Math. Mech. Eng. Ed. 21, 399–406 (2000)MATHCrossRef Xu, C.H., Qin, T.Y., Hua, Y.L.: Singular integral equations and boundary element method of cracks in thermally stressed planar solids. Appl. Math. Mech. Eng. Ed. 21, 399–406 (2000)MATHCrossRef
185.
go back to reference Niraula, O.P., Wang, B.L.: A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech. 187, 151–168 (2006)MATHCrossRef Niraula, O.P., Wang, B.L.: A magneto-electro-elastic material with a penny-shaped crack subjected to temperature loading. Acta Mech. 187, 151–168 (2006)MATHCrossRef
186.
go back to reference Niraula, O.P., Wang, B.L.: Thermal stress analysis in magneto-electro-thermo-elasticity with a penny-shaped crack under uniform heat flow. J. Therm. Stresses 29, 423–437 (2006)CrossRef Niraula, O.P., Wang, B.L.: Thermal stress analysis in magneto-electro-thermo-elasticity with a penny-shaped crack under uniform heat flow. J. Therm. Stresses 29, 423–437 (2006)CrossRef
187.
go back to reference Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in transversely isotropic magneto-electro-thermo-elastic medium subjected to uniform symmetric heat flux. Int. J. Solids Struct. 51, 1792–1808 (2014)CrossRef Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in transversely isotropic magneto-electro-thermo-elastic medium subjected to uniform symmetric heat flux. Int. J. Solids Struct. 51, 1792–1808 (2014)CrossRef
188.
go back to reference Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in an infinite linear transversely isotropic medium subjected to uniform anti-symmetric heat flux: Closed-form solution. Eur. J. Mech. A Solids 47, 254–270 (2014)MathSciNetCrossRef Yang, J., Jin, X.Y., Jin, N.G.: A penny-shaped crack in an infinite linear transversely isotropic medium subjected to uniform anti-symmetric heat flux: Closed-form solution. Eur. J. Mech. A Solids 47, 254–270 (2014)MathSciNetCrossRef
189.
go back to reference Li, X.Y., Chen, W.Q., Wang, H.Y.: General steady state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. Eur. J. Mech. A Solids 29, 317–326 (2010)CrossRef Li, X.Y., Chen, W.Q., Wang, H.Y.: General steady state solutions for transversely isotropic thermoporoelastic media in three dimensions and its application. Eur. J. Mech. A Solids 29, 317–326 (2010)CrossRef
190.
go back to reference Li, X.Y., Wu, J., Chen, W.Q., Wang, H.Y., Zhou, Z.Q.: Exact and complete fundamental solutions for penny-shaped crack in an infinite transversely isotropic thermoporoelastic medium: Mode I problem. Struct. Eng. Mech. 42, 313–334 (2012)CrossRef Li, X.Y., Wu, J., Chen, W.Q., Wang, H.Y., Zhou, Z.Q.: Exact and complete fundamental solutions for penny-shaped crack in an infinite transversely isotropic thermoporoelastic medium: Mode I problem. Struct. Eng. Mech. 42, 313–334 (2012)CrossRef
191.
192.
go back to reference Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids. Struct. 50, 1108–1119 (2013)CrossRef Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids. Struct. 50, 1108–1119 (2013)CrossRef
193.
go back to reference Karapetian, E., Kalinin, S.V.: Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes. J. Appl. Phys. 113, 187201 (2013)CrossRef Karapetian, E., Kalinin, S.V.: Indentation of a punch with chemical or heat distribution at its base into transversely isotropic half-space: Application to local thermal and electrochemical probes. J. Appl. Phys. 113, 187201 (2013)CrossRef
194.
go back to reference Yang, J., Jin, X.Y.: Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J. Appl. Phys. 115, 083516 (2014)CrossRef Yang, J., Jin, X.Y.: Indentation of a flat circular punch with uniform heat flux at its base into transversely isotropic magneto-electro-thermo-elastic half space. J. Appl. Phys. 115, 083516 (2014)CrossRef
195.
go back to reference Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)CrossRef Fan, T.Y., Mai, Y.W.: Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials. Appl. Mech. Rev. 57, 325–343 (2004)CrossRef
196.
go back to reference Li, X.Y.: Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional quasicrystal under thermal loading. Proc. R. Soc. A 469, 20130023 (2013)CrossRef Li, X.Y.: Fundamental solutions of penny-shaped and half-infinite plane cracks embedded in an infinite space of one-dimensional quasicrystal under thermal loading. Proc. R. Soc. A 469, 20130023 (2013)CrossRef
197.
go back to reference Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376, 2004–2009 (2012)MATHCrossRef Li, X.Y., Li, P.D.: Three-dimensional thermo-elastic general solutions of one-dimensional hexagonal quasi-crystal and fundamental solutions. Phys. Lett. A 376, 2004–2009 (2012)MATHCrossRef
198.
go back to reference Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37, 363–379 (2014)CrossRef Yang, L.Z., Zhang, L.L., Song, F., Gao, Y.: General solutions for three-dimensional thermoelasticity of two-dimensional hexagonal quasicrystals and an application. J. Therm. Stresses 37, 363–379 (2014)CrossRef
199.
go back to reference Chen, W.Q., Shioya, T., Ding, H.J.: Integral equations for mixed boundary value problem of a piezoelectric half-space and the applications. Mech. Res. Commun. 26, 583–590 (1999)MathSciNetMATHCrossRef Chen, W.Q., Shioya, T., Ding, H.J.: Integral equations for mixed boundary value problem of a piezoelectric half-space and the applications. Mech. Res. Commun. 26, 583–590 (1999)MathSciNetMATHCrossRef
200.
go back to reference Hou, P.F., Zhou, X.H., He, Y.J.: Green’s functions for a semi-infinite transversely isotropic piezothermoelastic material. Smart Mater. Struct. 16, 1915–1923 (2007)CrossRef Hou, P.F., Zhou, X.H., He, Y.J.: Green’s functions for a semi-infinite transversely isotropic piezothermoelastic material. Smart Mater. Struct. 16, 1915–1923 (2007)CrossRef
201.
go back to reference Hou, P.F., Luo, W., Leung, A.Y.T.: A point heat source on the surface of a semi-infinite transversely isotropic piezothermoelastic material. J. Appl. Mech. 75, 011013 (2008)CrossRef Hou, P.F., Luo, W., Leung, A.Y.T.: A point heat source on the surface of a semi-infinite transversely isotropic piezothermoelastic material. J. Appl. Mech. 75, 011013 (2008)CrossRef
202.
go back to reference Hou, P.F., Leung, A.Y.T., Ding, H.J.: A point heat source on the surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Eng. Sci. 46, 273–285 (2008)MATHCrossRef Hou, P.F., Leung, A.Y.T., Ding, H.J.: A point heat source on the surface of a semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Eng. Sci. 46, 273–285 (2008)MATHCrossRef
203.
go back to reference Hou, P.F., Yi, T., Leung, A.Y.T.: Green’s functions for semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Appl. Electromagnet. Mech. 29, 83–100 (2009) Hou, P.F., Yi, T., Leung, A.Y.T.: Green’s functions for semi-infinite transversely isotropic electro-magneto-thermo-elastic material. Int. J. Appl. Electromagnet. Mech. 29, 83–100 (2009)
204.
go back to reference Hou, P.F., Leung, A.Y.T.: Three-dimensional Green’s functions for two-phase transversely isotropic piezothermoelastic media. J. Intell. Mater. Syst. Struct. 20, 11–21 (2009)CrossRef Hou, P.F., Leung, A.Y.T.: Three-dimensional Green’s functions for two-phase transversely isotropic piezothermoelastic media. J. Intell. Mater. Syst. Struct. 20, 11–21 (2009)CrossRef
205.
go back to reference Hou, P.F., Li, Q.H., Jiang, H.Y.: Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications II: Green’s functions for two-phase infinite body. J. Therm. Stresses 36, 851–867 (2013)CrossRef Hou, P.F., Li, Q.H., Jiang, H.Y.: Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications II: Green’s functions for two-phase infinite body. J. Therm. Stresses 36, 851–867 (2013)CrossRef
206.
go back to reference Hou, P.F., Zhao, M., Ju, J.W.: Three-dimensional Green’s functions for transversely isotropic thermoporoelastic bimaterials. J. Appl. Geophys. 95, 36–46 (2013)CrossRef Hou, P.F., Zhao, M., Ju, J.W.: Three-dimensional Green’s functions for transversely isotropic thermoporoelastic bimaterials. J. Appl. Geophys. 95, 36–46 (2013)CrossRef
207.
go back to reference Hou, P.F., Zhao, M., Tong, J., Fu, B.: Three-dimensional steady-state Green’s functions for fluid-saturated, transversely isotropic, poroelastic bimaterials. J. Hydrol. 496, 217–224 (2013)CrossRef Hou, P.F., Zhao, M., Tong, J., Fu, B.: Three-dimensional steady-state Green’s functions for fluid-saturated, transversely isotropic, poroelastic bimaterials. J. Hydrol. 496, 217–224 (2013)CrossRef
208.
go back to reference Hou, P.F., Yuan, K., Tian, W.: Three-dimensional Green’s functions for a fluid and pyroelectric two-phase material. Appl. Math. Comput. 249, 303–319 (2014)MathSciNet Hou, P.F., Yuan, K., Tian, W.: Three-dimensional Green’s functions for a fluid and pyroelectric two-phase material. Appl. Math. Comput. 249, 303–319 (2014)MathSciNet
209.
go back to reference Hou, P.F., Li, Z.S., Zhang, Y.: Three-dimensional quasi-static Green’s function for an infinite transversely isotropic pyroelectric material under a step point heat source. Mech. Res. Commun. 62, 66–76 (2014)CrossRef Hou, P.F., Li, Z.S., Zhang, Y.: Three-dimensional quasi-static Green’s function for an infinite transversely isotropic pyroelectric material under a step point heat source. Mech. Res. Commun. 62, 66–76 (2014)CrossRef
210.
go back to reference Karapetian, E., Kalinin, S.V.: Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J. Appl. Phys. 110, 052020 (2011)CrossRef Karapetian, E., Kalinin, S.V.: Point force and generalized point source on the surface of semi-infinite transversely isotropic material. J. Appl. Phys. 110, 052020 (2011)CrossRef
211.
go back to reference Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRef
212.
213.
go back to reference Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)CrossRef Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)CrossRef
214.
go back to reference Sridhar, S., Giannakopoulos, A.E., Suresh, S., Ramamurty, U.: Electrical response during indentation of piezoelectric materials: a new method for material characterization. J. Appl. Phys. 85, 380–387 (1999)CrossRef Sridhar, S., Giannakopoulos, A.E., Suresh, S., Ramamurty, U.: Electrical response during indentation of piezoelectric materials: a new method for material characterization. J. Appl. Phys. 85, 380–387 (1999)CrossRef
215.
go back to reference Ramamurty, U., Sridhar, S., Giannakopoulos, A.E., Suresh, S.: An experimental study of spherical indentation on piezoelectric materials. Acta Mater. 47, 2417–2430 (1999)CrossRef Ramamurty, U., Sridhar, S., Giannakopoulos, A.E., Suresh, S.: An experimental study of spherical indentation on piezoelectric materials. Acta Mater. 47, 2417–2430 (1999)CrossRef
216.
go back to reference Sridhar, S., Giannakopoulos, A.E., Suresh, S.: Mechanical and electrical responses of piezoelectric solids to conical indentation. J. Appl. Phys. 87, 8451–8456 (2000)CrossRef Sridhar, S., Giannakopoulos, A.E., Suresh, S.: Mechanical and electrical responses of piezoelectric solids to conical indentation. J. Appl. Phys. 87, 8451–8456 (2000)CrossRef
217.
go back to reference Giannakopoulos, A.E.: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409–416 (2000)MATHCrossRef Giannakopoulos, A.E.: Strength analysis of spherical indentation of piezoelectric materials. J. Appl. Mech. 67, 409–416 (2000)MATHCrossRef
218.
go back to reference Giannakopoulos, A.E., Parmaklis, A.Z.: The contact problem of a circular rigid punch on piezomagnetic materials. Int. J. Solids Struct. 44, 4593–4612 (2007)MATHCrossRef Giannakopoulos, A.E., Parmaklis, A.Z.: The contact problem of a circular rigid punch on piezomagnetic materials. Int. J. Solids Struct. 44, 4593–4612 (2007)MATHCrossRef
219.
go back to reference Kalinin, S.V., Bonnell, D.A.: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002)CrossRef Kalinin, S.V., Bonnell, D.A.: Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002)CrossRef
220.
go back to reference Rar, A., Pharr, G.M., Oliver, W.C., Karapetian, E., Kalinin, S.V.: Piezoelectric nanoindentation. J. Mater. Res. 21, 552–556 (2006)CrossRef Rar, A., Pharr, G.M., Oliver, W.C., Karapetian, E., Kalinin, S.V.: Piezoelectric nanoindentation. J. Mater. Res. 21, 552–556 (2006)CrossRef
221.
go back to reference Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N.: Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007)CrossRef Kalinin, S.V., Rodriguez, B.J., Jesse, S., Karapetian, E., Mirman, B., Eliseev, E.A., Morozovska, A.N.: Nanoscale electromechanics of ferroelectric and biological systems: a new dimension in scanning probe microscopy. Annu. Rev. Mater. Res. 37, 189–238 (2007)CrossRef
222.
go back to reference Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys. Rev. B 76, 040511 (2007)CrossRef Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Indentation of spherical and conical punches into piezoelectric half-space with frictional sliding: applications to scanning probe microscopy. Phys. Rev. B 76, 040511 (2007)CrossRef
223.
go back to reference Karapetian, E., Kachanov, M., Kalinin, S.V.: Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J. Mech. Phys. Solids 57, 673–688 (2009)MathSciNetMATHCrossRef Karapetian, E., Kachanov, M., Kalinin, S.V.: Stiffness relations for piezoelectric indentation of flat and non-flat punches of arbitrary planform: applications to probing nanoelectromechanical properties of materials. J. Mech. Phys. Solids 57, 673–688 (2009)MathSciNetMATHCrossRef
224.
go back to reference Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int. J. Eng. Sci. 47, 221–229 (2009)CrossRef Makagon, A., Kachanov, M., Karapetian, E., Kalinin, S.V.: Piezoelectric indentation of a flat circular punch accompanied by frictional sliding and applications to scanning probe microscopy. Int. J. Eng. Sci. 47, 221–229 (2009)CrossRef
225.
go back to reference Pan, K., Liu, Y.Y., Xie, S.H., Liu, Y.M., Li, J.Y.: The electromechanics of piezoresponse force microscopy for a transversely isotropic piezoelectric medium. Acta Mater. 61, 7020–7033 (2013)CrossRef Pan, K., Liu, Y.Y., Xie, S.H., Liu, Y.M., Li, J.Y.: The electromechanics of piezoresponse force microscopy for a transversely isotropic piezoelectric medium. Acta Mater. 61, 7020–7033 (2013)CrossRef
226.
go back to reference Kalinin, S.V., Mirman, B., Karapetian, E.: Relationship between direct and converse piezoelectric effect in a nanoscaled electromechanical contact. Phys. Rev. B 76, 212102 (2007)CrossRef Kalinin, S.V., Mirman, B., Karapetian, E.: Relationship between direct and converse piezoelectric effect in a nanoscaled electromechanical contact. Phys. Rev. B 76, 212102 (2007)CrossRef
227.
go back to reference Prashanthi, K., Mandal, M., Duttagupta, S.P., Ramgopal Rao, V., Pant, P., Dhale, K., Palkar, V.R.: Nanomechanical characterization of multiferroic thin films for micro-electromechanical systems. Int. J. Nanosci. 10, 1039–1042 (2011)CrossRef Prashanthi, K., Mandal, M., Duttagupta, S.P., Ramgopal Rao, V., Pant, P., Dhale, K., Palkar, V.R.: Nanomechanical characterization of multiferroic thin films for micro-electromechanical systems. Int. J. Nanosci. 10, 1039–1042 (2011)CrossRef
228.
go back to reference Nelson, B.A., King, W.P.: Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev. Sci. Instrum. 78, 023702 (2007)CrossRef Nelson, B.A., King, W.P.: Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev. Sci. Instrum. 78, 023702 (2007)CrossRef
229.
go back to reference Nikiforov, M.P., Jesse, S., Morozovska, A.N., Eliseev, E.A., Germinario, L.T., Kalinin, S.V.: Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology 20, 395709 (2009)CrossRef Nikiforov, M.P., Jesse, S., Morozovska, A.N., Eliseev, E.A., Germinario, L.T., Kalinin, S.V.: Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. Nanotechnology 20, 395709 (2009)CrossRef
230.
go back to reference Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V.: Real space mapping of Li-Ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420–3425 (2010)CrossRef Balke, N., Jesse, S., Kim, Y., Adamczyk, L., Tselev, A., Ivanov, I.N., Dudney, N.J., Kalinin, S.V.: Real space mapping of Li-Ion transport in amorphous Si anodes with nanometer resolution. Nano Lett. 10, 3420–3425 (2010)CrossRef
231.
go back to reference Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S.: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011)CrossRef Kumar, A., Ciucci, F., Morozovska, A.N., Kalinin, S.V., Jesse, S.: Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011)CrossRef
232.
go back to reference Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRef Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRef
233.
go back to reference Chan, E.P., Hu, Y.H., Johnson, P.M., Suo, Z.G., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)CrossRef Chan, E.P., Hu, Y.H., Johnson, P.M., Suo, Z.G., Stafford, C.M.: Spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8, 1492–1498 (2012)CrossRef
234.
go back to reference Yang, L., Tu, Y.S., Tan, H.L.: Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment. Appl. Math. Mech. Eng. Ed. 33, 829–844 (2014)MATH Yang, L., Tu, Y.S., Tan, H.L.: Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment. Appl. Math. Mech. Eng. Ed. 33, 829–844 (2014)MATH
235.
go back to reference Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. R. Soc. Lond. A 460, 507–514 (2004)MathSciNetMATHCrossRef Borodich, F.M., Keer, L.M.: Evaluation of elastic modulus of materials by adhesive (no-slip) nano-indentation. Proc. R. Soc. Lond. A 460, 507–514 (2004)MathSciNetMATHCrossRef
236.
go back to reference Borodich, F.M.: The Hertz-type and adhesive contact problems for depth- sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRef Borodich, F.M.: The Hertz-type and adhesive contact problems for depth- sensing indentation. Adv. Appl. Mech. 47, 225–366 (2014)CrossRef
237.
go back to reference Rogowski, B., Kaliński, W.: The adhesive contact problem for a piezoelectric half-space. Int. J. Press. Vessels Pip. 84, 502–511 (2007)CrossRef Rogowski, B., Kaliński, W.: The adhesive contact problem for a piezoelectric half-space. Int. J. Press. Vessels Pip. 84, 502–511 (2007)CrossRef
238.
go back to reference Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)MathSciNetMATHCrossRef Dundurs, J., Markenscoff, X.: A Green’s function formulation of anticracks and their interaction with load-induced singularities. J. Appl. Mech. 56, 550–555 (1989)MathSciNetMATHCrossRef
239.
go back to reference Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space, Part II: Solutions of the integral equations. J. Appl. Mech. 66, 621–630 (1999)CrossRef Rahman, M.: Some problems of a rigid elliptical disk-inclusion bonded inside a transversely isotropic space, Part II: Solutions of the integral equations. J. Appl. Mech. 66, 621–630 (1999)CrossRef
240.
go back to reference Rahman, M.: The normal shift of a rigid elliptical disk in a transversely isotropic solid. Int. J. Solids Struct. 38, 3965–3977 (2001)MATHCrossRef Rahman, M.: The normal shift of a rigid elliptical disk in a transversely isotropic solid. Int. J. Solids Struct. 38, 3965–3977 (2001)MATHCrossRef
241.
go back to reference Kaczyński, A.: On 3D anticrack problems in a transversely isotropic solid. Eur. J. Mech. A Solids 43, 142–151 (2014)MathSciNetCrossRef Kaczyński, A.: On 3D anticrack problems in a transversely isotropic solid. Eur. J. Mech. A Solids 43, 142–151 (2014)MathSciNetCrossRef
242.
go back to reference Kaczyński, A.: Thermal stress analysis of a three-dimensional anticrack in a transversely isotropic solid. Int. J. Solids Struct. 51, 2382–2389 (2014)CrossRef Kaczyński, A.: Thermal stress analysis of a three-dimensional anticrack in a transversely isotropic solid. Int. J. Solids Struct. 51, 2382–2389 (2014)CrossRef
243.
go back to reference Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.L.: Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55, 4015–4039 (2007) Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., Shen, Y.L.: Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater. 55, 4015–4039 (2007)
244.
go back to reference Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X., Wang, T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–81 (2011) Wang, J.X., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X., Wang, T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–81 (2011)
245.
go back to reference Chen, W.Q.: Surface effect on Bleustein–Gulyaev wave in a piezoelectric half-space. Theor. Appl. Mech. Lett. 1, 041001 (2011)CrossRef Chen, W.Q.: Surface effect on Bleustein–Gulyaev wave in a piezoelectric half-space. Theor. Appl. Mech. Lett. 1, 041001 (2011)CrossRef
246.
go back to reference Qin, J., Qu, S.X., Feng, X., Huang, Y.G., Xiao, J.L., Hwang, K.C.: A numerical study of indentation with small spherical indenters. Acta Mech. Solida Sin. 22, 18–26 (2009)CrossRef Qin, J., Qu, S.X., Feng, X., Huang, Y.G., Xiao, J.L., Hwang, K.C.: A numerical study of indentation with small spherical indenters. Acta Mech. Solida Sin. 22, 18–26 (2009)CrossRef
247.
go back to reference Wei, Y.G., Wang, X.Z., Zhao, M.H., Cheng, C.M., Bai, Y.L.: Size effect and geometrical effect of solids in micro-indentation test. Acta Mech. Sin. 19, 59–70 (2003)CrossRef Wei, Y.G., Wang, X.Z., Zhao, M.H., Cheng, C.M., Bai, Y.L.: Size effect and geometrical effect of solids in micro-indentation test. Acta Mech. Sin. 19, 59–70 (2003)CrossRef
248.
go back to reference Zhou, H., Zhang, H.L., Pei, Y.M., Chen, H.S., Zhao, H.W., Fang, D.N.: Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale. Appl. Phys. Lett. 106, 081904 (2015)CrossRef Zhou, H., Zhang, H.L., Pei, Y.M., Chen, H.S., Zhao, H.W., Fang, D.N.: Scaling relationship among indentation properties of electromagnetic materials at micro- and nanoscale. Appl. Phys. Lett. 106, 081904 (2015)CrossRef
249.
go back to reference Zhao, M.H., Cheng, C.J., Liu, Y.J., Liu, G.N., Zhang, S.S.: The method of analysis of crack problem in three-dimensional non-local elasticity. Appl. Math. Mech. Eng. Ed. 20, 469–475 (1999)MATHCrossRef Zhao, M.H., Cheng, C.J., Liu, Y.J., Liu, G.N., Zhang, S.S.: The method of analysis of crack problem in three-dimensional non-local elasticity. Appl. Math. Mech. Eng. Ed. 20, 469–475 (1999)MATHCrossRef
250.
go back to reference Dai, T.M.: The mixed boundary-value problem for non-local asymmetric elasticity. Appl. Math. Mech. Eng. Ed. 21, 27–32 (2000)MATHCrossRef Dai, T.M.: The mixed boundary-value problem for non-local asymmetric elasticity. Appl. Math. Mech. Eng. Ed. 21, 27–32 (2000)MATHCrossRef
252.
go back to reference Willis, J.R.: The stress field around an elliptical crack in an anisotropic elastic medium. Int. J. Eng. Sci. 6, 253–263 (1968)MATHCrossRef Willis, J.R.: The stress field around an elliptical crack in an anisotropic elastic medium. Int. J. Eng. Sci. 6, 253–263 (1968)MATHCrossRef
253.
go back to reference Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Effect of anisotropy on thermoelastic contact problem. Appl. Math. Mech. Eng. Ed. 29, 501–510 (2008)MATHCrossRef Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Effect of anisotropy on thermoelastic contact problem. Appl. Math. Mech. Eng. Ed. 29, 501–510 (2008)MATHCrossRef
254.
go back to reference Fabrikant, V.I.: Non-traditional contact problem for transversely isotropic half-space. Q. J. Mech. Appl. Math. 64, 151–170 (2011)MathSciNetMATHCrossRef Fabrikant, V.I.: Non-traditional contact problem for transversely isotropic half-space. Q. J. Mech. Appl. Math. 64, 151–170 (2011)MathSciNetMATHCrossRef
255.
256.
go back to reference Sevostianov, I., Paulo da Silva, U., Aguiar, A.R.: Green’s function for piezoelectric 622 hexagonal crystals. Int. J. Eng. Sci. 84, 18–28 (2014)CrossRef Sevostianov, I., Paulo da Silva, U., Aguiar, A.R.: Green’s function for piezoelectric 622 hexagonal crystals. Int. J. Eng. Sci. 84, 18–28 (2014)CrossRef
258.
go back to reference Tian, J.Y., Xie, Z.M.: Dynamic contact stiffness of vibrating rigid sphere contacting semi-infinite transversely isotropic viscoelastic solid. Acta Mech. Solida Sin. 21, 580–588 (2008)CrossRef Tian, J.Y., Xie, Z.M.: Dynamic contact stiffness of vibrating rigid sphere contacting semi-infinite transversely isotropic viscoelastic solid. Acta Mech. Solida Sin. 21, 580–588 (2008)CrossRef
259.
go back to reference Zhang, T.Y.: Effects of static electric field on the fracture behavior of piezoelectric ceramics. Acta Mech. Sin. 18, 537–550 (2002)CrossRef Zhang, T.Y.: Effects of static electric field on the fracture behavior of piezoelectric ceramics. Acta Mech. Sin. 18, 537–550 (2002)CrossRef
260.
go back to reference Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)MATH Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)MATH
261.
go back to reference Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)MATHCrossRef Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)MATHCrossRef
262.
go back to reference Wang, Q.M., Mohan, A.C., Oyen, M.L., Zhao, X.H.: Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mech. Sin. 30, 20–27 (2014)MathSciNetCrossRef Wang, Q.M., Mohan, A.C., Oyen, M.L., Zhao, X.H.: Separating viscoelasticity and poroelasticity of gels with different length and time scales. Acta Mech. Sin. 30, 20–27 (2014)MathSciNetCrossRef
263.
go back to reference Touzaline, A.: Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials. Appl. Math. Mech. Eng. Ed. 31, 623–634 (2010)MathSciNetMATHCrossRef Touzaline, A.: Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials. Appl. Math. Mech. Eng. Ed. 31, 623–634 (2010)MathSciNetMATHCrossRef
Metadata
Title
Some recent advances in 3D crack and contact analysis of elastic solids with transverse isotropy and multifield coupling
Author
Wei-Qiu Chen
Publication date
16-09-2015
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 5/2015
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0509-3

Other articles of this Issue 5/2015

Acta Mechanica Sinica 5/2015 Go to the issue

Premium Partners