Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

21-06-2022 | Original Article

Some results on the electroacoustic energy flux for micropolar bodies

Authors: Marin Marin, Sorin Vlase, Andreas Öchsner, Eduard M. Craciun

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Our study is a generalization of some results obtained by Synge in the classical theory of elasticity. By this extension, we wish to cover the theory of micropolar elastic bodies. More precisely, we approach the electroacoustic energy flux in the case of plane waves of harmonic type which propagate in piezoelectric crystals which are supposed to be prepolarized and prestressed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baesu, E., Fortune, D., Soos, E.: Incremental behaviour of hypereleastic dielectrics and piezoelectric crystals. Z. Angew. Math. Phys. 54, 160–168 (2003)MathSciNetCrossRef Baesu, E., Fortune, D., Soos, E.: Incremental behaviour of hypereleastic dielectrics and piezoelectric crystals. Z. Angew. Math. Phys. 54, 160–168 (2003)MathSciNetCrossRef
2.
go back to reference Balakirov, M.K., Ghilinskii, M.K.: Waves in Piezoelectric Crystals. Nauka, Novosibirsk (1982).. ((in Russian)) Balakirov, M.K., Ghilinskii, M.K.: Waves in Piezoelectric Crystals. Nauka, Novosibirsk (1982).. ((in Russian))
3.
go back to reference Synge, J.L.: Flux and energy for elastic waves in anisotropic media. Proc. Roy. Irish Acad. 58, 13–21 (1956)MathSciNetMATH Synge, J.L.: Flux and energy for elastic waves in anisotropic media. Proc. Roy. Irish Acad. 58, 13–21 (1956)MathSciNetMATH
4.
go back to reference Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)CrossRef Eringen, A.C.: Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 28, 1291–1301 (1990)CrossRef
5.
go back to reference Eringen, A.C.: Microcontinuum Field Theories. Springer-Verlag, New York (1999)CrossRef Eringen, A.C.: Microcontinuum Field Theories. Springer-Verlag, New York (1999)CrossRef
6.
go back to reference Iesan, D., Quintanilla, R.: Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 43, 885–907 (2005)CrossRef Iesan, D., Quintanilla, R.: Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 43, 885–907 (2005)CrossRef
8.
go back to reference Vlase, S., et al.: Advanced Polylite composite laminate material behavior to tensile stress on weft direction. J. Optoelectron. Adv. Mater. 14(7–8), 658–663 (2012) Vlase, S., et al.: Advanced Polylite composite laminate material behavior to tensile stress on weft direction. J. Optoelectron. Adv. Mater. 14(7–8), 658–663 (2012)
9.
go back to reference Teodorescu-Draghicescu, H., et al.: Optoelectron. Adv. Mater. Rapid Commun. 5(3–4), 273–277 (2011) Teodorescu-Draghicescu, H., et al.: Optoelectron. Adv. Mater. Rapid Commun. 5(3–4), 273–277 (2011)
10.
go back to reference Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(6), 1365–1374 (2017)ADSMathSciNetCrossRef Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green-Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29(6), 1365–1374 (2017)ADSMathSciNetCrossRef
11.
go back to reference Marin, M., Marinescu, C.: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73–86 (1998)MathSciNetCrossRef Marin, M., Marinescu, C.: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73–86 (1998)MathSciNetCrossRef
12.
go back to reference Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. An. St. Univ. Ovidius Constanta 22(1), 169–188 (2014)MathSciNetMATH Marin, M., Florea, O.: On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. An. St. Univ. Ovidius Constanta 22(1), 169–188 (2014)MathSciNetMATH
13.
go back to reference Marin, M., et al.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)CrossRef Marin, M., et al.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)CrossRef
14.
go back to reference Hobiny, A., et al.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020)CrossRef Hobiny, A., et al.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), 602 (2020)CrossRef
16.
go back to reference Abouelregal, A.E., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8(7), 1128 (2020)CrossRef Abouelregal, A.E., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8(7), 1128 (2020)CrossRef
17.
go back to reference Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)CrossRef Marin, M., Öchsner, A.: Complements of Higher Mathematics. Springer, Cham (2018)CrossRef
18.
go back to reference Bhatti, M.M., Beg, O.A., Abdelsalam, S.I.: Computational framework of magnetized MgO-Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings. Nanomaterials (Basel) 12(7), 1049 (2022)CrossRef Bhatti, M.M., Beg, O.A., Abdelsalam, S.I.: Computational framework of magnetized MgO-Ni/water-based stagnation nanoflow past an elastic stretching surface: application in solar energy coatings. Nanomaterials (Basel) 12(7), 1049 (2022)CrossRef
19.
go back to reference Bello González, N., et al.: On the energy flux in acoustic waves in the solar atmosphere. Memorie della Societa Astronomica Italiana 81, 757–752 (2010)ADS Bello González, N., et al.: On the energy flux in acoustic waves in the solar atmosphere. Memorie della Societa Astronomica Italiana 81, 757–752 (2010)ADS
20.
go back to reference Iniesta, C., et al.: New method to analyse and optimise thermoacoustic power generators for the recovery of residual energy. Alex. Eng. J. 59(5), 3907–3917 (2020)CrossRef Iniesta, C., et al.: New method to analyse and optimise thermoacoustic power generators for the recovery of residual energy. Alex. Eng. J. 59(5), 3907–3917 (2020)CrossRef
21.
go back to reference Backhaus, S., Swift, G.W.: A thermoacoustic-Stirling heat engine: detailed study. J. Acoust. Soc. Am. 107, 3148–3166 (2000)ADSCrossRef Backhaus, S., Swift, G.W.: A thermoacoustic-Stirling heat engine: detailed study. J. Acoust. Soc. Am. 107, 3148–3166 (2000)ADSCrossRef
Metadata
Title
Some results on the electroacoustic energy flux for micropolar bodies
Authors
Marin Marin
Sorin Vlase
Andreas Öchsner
Eduard M. Craciun
Publication date
21-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01114-7

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners