Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

21-07-2022 | Original Article

Extremal inclusions in nonlinear conductivity

Author: Michaël Peigney

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider two-phase composites whose microstructures are two-dimensional and generated by the periodic replication of a convex polygonal cell containing a single inclusion embedded in a matrix. Adopting the framework of nonlinear conductivity, we address the problem of finding the inclusion shape that optimizes the effective energy. A conceptually simple but numerically effective approach is presented, in which the inclusion shape is parameterized by the Fourier coefficients of a scalar periodic function f that defines its polar representation. Truncating the Fourier expansion to a finite order turns the shape optimization problem into a finite-dimensional constrained optimization problem that can be solved using a numerical algorithm of choice. Explicit expressions of the function to optimize and its gradient are provided and can easily be evaluated from a finite-element model. The proposed approach is applied to perfectly conducting inclusions in a power law matrix. Results for the three types of regular tessellations (square, hexagonal and triangular) are presented and compared with the Vidgergauz [23, 24] microstructures giving the extremal inclusions in the linear case. The proposed method gives very simple representations of the extremal inclusions, which could useful for manufacturing the microstructures considered. The obtained nonlinear effective conductivities are compared with known Hashin–Shtrikman-type nonlinear bounds, which contributes to shed some light on the optimality of those bounds.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
It should be noted that [23, 24] dealt with elasticity problems rather than conductivity problems, more specifically considering the problem of finding microstructures of extremal bulk modulus. Those microstructures can be shown to be also extremal for the conductivity problem. This results from the cross-properties of [3], as detailed in Appendix B.
 
2
Using (2), that integral can be indeed be rewritten as \(\frac{1}{|\Omega |}\int _{\Omega } \varvec{j}\cdot (\nabla \delta u) d\omega \) and we have \(\int _{\Omega } \varvec{j}\cdot (\nabla \delta u) d\omega = - \int _{\Omega } \delta u \,{\text {div}}\,\varvec{j}d\omega + \int _{\partial \Omega } (\varvec{j}\cdot \varvec{n})\delta u ds\). Now \({\text {div}}\,\varvec{j}=0\) from (2) and \( \int _{\partial \Omega } (\varvec{j}\cdot \varvec{n})\delta u ds =0\) because \(\delta u\) is periodic and \(\varvec{j}\cdot \varvec{n}\) is anti-periodic.
 
Literature
1.
go back to reference Allaire, G.: Shape Optimization by the Homogenization Method, vol. 146. Springer Science and Business Media, Berlin (2012)MATH Allaire, G.: Shape Optimization by the Homogenization Method, vol. 146. Springer Science and Business Media, Berlin (2012)MATH
2.
go back to reference Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer Science and Business Media, Berlin (2013)MATH Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer Science and Business Media, Berlin (2013)MATH
3.
go back to reference Gibiansky, L., Torquato, S.: Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 353(1702), 243–278 (1995)ADSMATH Gibiansky, L., Torquato, S.: Rigorous link between the conductivity and elastic moduli of fibre-reinforced composite materials. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 353(1702), 243–278 (1995)ADSMATH
4.
go back to reference Grabovsky, Y., Kohn, R.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: The Vidgergauz microstructure. J. Mech. Phys. Solids 43(6), 949–972 (1995)ADSMathSciNetCrossRef Grabovsky, Y., Kohn, R.: Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: The Vidgergauz microstructure. J. Mech. Phys. Solids 43(6), 949–972 (1995)ADSMathSciNetCrossRef
5.
go back to reference Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)ADSCrossRef Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33(10), 3125–3131 (1962)ADSCrossRef
6.
go back to reference Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)ADSMathSciNetCrossRef Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11(2), 127–140 (1963)ADSMathSciNetCrossRef
9.
go back to reference Liu, L., James, R., Leo, P.: New extremal inclusions and their applications to two-phase composites. preprint (2008) Liu, L., James, R., Leo, P.: New extremal inclusions and their applications to two-phase composites. preprint (2008)
10.
go back to reference Lurie, K., Cherkaev, A.: Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. R Soc. Edinburgh A 99(1–2), 71–87 (1984)MathSciNetCrossRef Lurie, K., Cherkaev, A.: Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportion. Proc. R Soc. Edinburgh A 99(1–2), 71–87 (1984)MathSciNetCrossRef
11.
go back to reference Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)CrossRef
12.
go back to reference Murat, F., Tartar, L.: Calcul des variations et homogénéisation. Les méthodes de l’homogénéisation: théorie et applications en physique 57, 319–369 (1985) Murat, F., Tartar, L.: Calcul des variations et homogénéisation. Les méthodes de l’homogénéisation: théorie et applications en physique 57, 319–369 (1985)
13.
go back to reference Peigney, B., Peigney, M.: Bounds for nonlinear composite conductors via the translation method. J. Mech. Phys. Solids 101, 93–117 (2017)ADSMathSciNetCrossRef Peigney, B., Peigney, M.: Bounds for nonlinear composite conductors via the translation method. J. Mech. Phys. Solids 101, 93–117 (2017)ADSMathSciNetCrossRef
14.
go back to reference Peigney, M.: A pattern-based method for bounding the effective response of a nonlinear composite. J. Mech. Phys. Solids 53(4), 923–948 (2005)ADSMathSciNetCrossRef Peigney, M.: A pattern-based method for bounding the effective response of a nonlinear composite. J. Mech. Phys. Solids 53(4), 923–948 (2005)ADSMathSciNetCrossRef
15.
go back to reference Peigney, M.: Improved bounds on the energy-minimizing strains in martensitic polycrystals. Continuum Mech. Thermodyn. 28(4), 923–946 (2016)ADSMathSciNetCrossRef Peigney, M.: Improved bounds on the energy-minimizing strains in martensitic polycrystals. Continuum Mech. Thermodyn. 28(4), 923–946 (2016)ADSMathSciNetCrossRef
16.
go back to reference Ponte Castañeda, P.: The effective mechanical properties of nonlinear isotropic solids. J. Mech. Phys. Solids 39, 45–71 (1991)MathSciNetCrossRef Ponte Castañeda, P.: The effective mechanical properties of nonlinear isotropic solids. J. Mech. Phys. Solids 39, 45–71 (1991)MathSciNetCrossRef
17.
go back to reference Ponte Castañeda, P., deBotton, G., Li, G.: Effective properties of nonlinear inhomogeneous dielectrics. Phys. Rev. B 46, 4387–4394 (1992)ADSCrossRef Ponte Castañeda, P., deBotton, G., Li, G.: Effective properties of nonlinear inhomogeneous dielectrics. Phys. Rev. B 46, 4387–4394 (1992)ADSCrossRef
18.
go back to reference Ponte Castañeda, P.: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids 40(8), 1757–1788 (1992)MathSciNetCrossRef Ponte Castañeda, P.: New variational principles in plasticity and their application to composite materials. J. Mech. Phys. Solids 40(8), 1757–1788 (1992)MathSciNetCrossRef
19.
go back to reference Ponte Castañeda, P.: Bounds for nonlinear composites via iterated homogenization. J. Mech. Phys. Solids 60, 1583–1604 (2012)ADSMathSciNetCrossRef Ponte Castañeda, P.: Bounds for nonlinear composites via iterated homogenization. J. Mech. Phys. Solids 60, 1583–1604 (2012)ADSMathSciNetCrossRef
20.
go back to reference Singer, D.A.: Tiling the plane with regular polygons. In: Geometry: Plane and Fancy. pp. 21–47. Springer, Berlin (1998) Singer, D.A.: Tiling the plane with regular polygons. In: Geometry: Plane and Fancy. pp. 21–47. Springer, Berlin (1998)
21.
go back to reference Talbot, D.R.S., Willis, J.R.: Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35(1), 39–54 (1985)MathSciNetCrossRef Talbot, D.R.S., Willis, J.R.: Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35(1), 39–54 (1985)MathSciNetCrossRef
22.
go back to reference Talbot, D.R.S., Willis, J.R.: Bounds for the effective constitutive relation of a nonlinear composite. Proc. R. Soc. Lond. A 460(2049), 2705 (2004)ADSMathSciNetCrossRef Talbot, D.R.S., Willis, J.R.: Bounds for the effective constitutive relation of a nonlinear composite. Proc. R. Soc. Lond. A 460(2049), 2705 (2004)ADSMathSciNetCrossRef
23.
go back to reference Vigdergauz, S.: Two-dimensional grained composites of extreme rigidity. ASME J. Appl. Mech 61, 390–394 (1994)ADSCrossRef Vigdergauz, S.: Two-dimensional grained composites of extreme rigidity. ASME J. Appl. Mech 61, 390–394 (1994)ADSCrossRef
24.
go back to reference Vigdergauz, S.: Energy-minimizing inclusions in a planar elastic structure with macroisotropy. Struct. Optim. 17(2–3), 104–112 (1999)CrossRef Vigdergauz, S.: Energy-minimizing inclusions in a planar elastic structure with macroisotropy. Struct. Optim. 17(2–3), 104–112 (1999)CrossRef
25.
go back to reference Vigdergauz, S.: The effective properties of a perforated elastic plate numerical optimization by genetic algorithm. Int. J. Solids Struct. 38(48–49), 8593–8616 (2001)CrossRef Vigdergauz, S.: The effective properties of a perforated elastic plate numerical optimization by genetic algorithm. Int. J. Solids Struct. 38(48–49), 8593–8616 (2001)CrossRef
26.
go back to reference Vigdergauz, S.: The stress-minimizing hole in an elastic plate under remote shear. J. Mech. Mater. Struct. 1(2), 387–406 (2006)CrossRef Vigdergauz, S.: The stress-minimizing hole in an elastic plate under remote shear. J. Mech. Mater. Struct. 1(2), 387–406 (2006)CrossRef
27.
go back to reference Vigdergauz, S.: Energy-minimizing openings around a fixed hole in an elastic plate. J. Mech. Mater. Struct. 5(4), 661–677 (2010)MathSciNetCrossRef Vigdergauz, S.: Energy-minimizing openings around a fixed hole in an elastic plate. J. Mech. Mater. Struct. 5(4), 661–677 (2010)MathSciNetCrossRef
Metadata
Title
Extremal inclusions in nonlinear conductivity
Author
Michaël Peigney
Publication date
21-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01122-7

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners