Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

07-06-2022 | Original Article

Nonlinear analysis for propellant solids

Authors: Panayiotis A. Kakavas-Papaniaros, Georgios I. Giannopoulos

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research paper aims to develop a mathematical model for the interpretation of experimental data for propellant solids. A simple model is constructed by assuming a spherical unit cell. Equations are written with respect to the volume fraction of the filler particles as well as the fraction of the area that is unbonded. A sphere of a finite radius is assumed, containing a rubber matrix inside of which is a rigid filler particle of a smaller radius. A parameter is assigned for the porosity of the material while effective expressions for the shear and the bulk modulus and the strain energy function are written for the composite material. Based on the proposed strain energy function, the stress–strain relations are defined for the propellant solids. The model is based on four material parameters that were evaluated using Farris’s experimental data.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Shen, L.-L., Shen, Z.-B., Xie, Y., Li, H.-Y.: effective mechanical property estimation of composite solid propellants based on VCFEM. Int. J. Aerospace Eng. 2018, 2050876 (2018) Shen, L.-L., Shen, Z.-B., Xie, Y., Li, H.-Y.: effective mechanical property estimation of composite solid propellants based on VCFEM. Int. J. Aerospace Eng. 2018, 2050876 (2018)
2.
go back to reference Adel, W.M., Liang, G.-Z.: Analysis of mechanical properties for AP/HTPB solid propellant under different loading conditions. World Acad. Sci. Eng. Technol. Int. J. Aerospace Mech. Eng. 11(12), 1915–1919 (2017) Adel, W.M., Liang, G.-Z.: Analysis of mechanical properties for AP/HTPB solid propellant under different loading conditions. World Acad. Sci. Eng. Technol. Int. J. Aerospace Mech. Eng. 11(12), 1915–1919 (2017)
3.
go back to reference Kakavas, P.A.: Mechanical properties of propellant composite materials reinforced with ammonium perchlorate particles. Int. J. Solids Struct. 51(10), 2019–2026 (2014)CrossRef Kakavas, P.A.: Mechanical properties of propellant composite materials reinforced with ammonium perchlorate particles. Int. J. Solids Struct. 51(10), 2019–2026 (2014)CrossRef
4.
go back to reference Fareghi, A.R., Moosavi Nadooshan, S.A., Zekri, N., Mohammadi-Vala, M.: Mechanical properties and burning rate studies of double-base propellants with Akarditeii, Centralite, or 2-Ndpa as stabilizers. J. Energ. Mater. 11(1), 55–60 (2016) Fareghi, A.R., Moosavi Nadooshan, S.A., Zekri, N., Mohammadi-Vala, M.: Mechanical properties and burning rate studies of double-base propellants with Akarditeii, Centralite, or 2-Ndpa as stabilizers. J. Energ. Mater. 11(1), 55–60 (2016)
5.
go back to reference Rao, N.P., Solanke, C., Bihari, B.K., Singh, P.P., Bhattacharya, B.: evaluation of mechanical properties of solid propellants in rocket motors by indentation technique. Propellants Explos. Pyrotech. 41(2), 281–285 (2016)CrossRef Rao, N.P., Solanke, C., Bihari, B.K., Singh, P.P., Bhattacharya, B.: evaluation of mechanical properties of solid propellants in rocket motors by indentation technique. Propellants Explos. Pyrotech. 41(2), 281–285 (2016)CrossRef
6.
go back to reference Mason, B.P., Roland, C.M.: Solid propellants. Rubber Chem. Technol. 92(1), 1–24 (2019)CrossRef Mason, B.P., Roland, C.M.: Solid propellants. Rubber Chem. Technol. 92(1), 1–24 (2019)CrossRef
7.
go back to reference Eirich, F.R.Q.: Failure modes of elastomers. Eng. Fract. Mech. 5(3), 555–562 (1973)CrossRef Eirich, F.R.Q.: Failure modes of elastomers. Eng. Fract. Mech. 5(3), 555–562 (1973)CrossRef
8.
go back to reference Bueche, F.: Physical Properties of Polymers, p. 49. Wiley, New York (1962) Bueche, F.: Physical Properties of Polymers, p. 49. Wiley, New York (1962)
9.
go back to reference Farris, R.J.: The influence of vacuole formation on the response and failure of filled elastomers. J. Rheol. 12(2), 315–334 (1968)ADS Farris, R.J.: The influence of vacuole formation on the response and failure of filled elastomers. J. Rheol. 12(2), 315–334 (1968)ADS
10.
go back to reference Farris, R.J.: The character of the stress-strain function for highly filled elastomers. J. Rheol. 12(2), 303–314 (1968)ADS Farris, R.J.: The character of the stress-strain function for highly filled elastomers. J. Rheol. 12(2), 303–314 (1968)ADS
11.
go back to reference Farris, R.J., Falabella, R., Tsai, Y.D.: influence of vacuole formation and growth on the mechanical behavior of polymers. ACS Symp. Ser. 95, 233–243 (1978)CrossRef Farris, R.J., Falabella, R., Tsai, Y.D.: influence of vacuole formation and growth on the mechanical behavior of polymers. ACS Symp. Ser. 95, 233–243 (1978)CrossRef
12.
go back to reference Dong, S., Herrmann, L., Pister, K., Taylor, R.: Studies relating to structural analysis of solid propellants. Final Report to Aerojet-General Corporation, Department of Civil Engineering, UCB (1962) Dong, S., Herrmann, L., Pister, K., Taylor, R.: Studies relating to structural analysis of solid propellants. Final Report to Aerojet-General Corporation, Department of Civil Engineering, UCB (1962)
13.
go back to reference Ogden, R.W.: Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem. Technol. 46(2), 398–416 (1973)CrossRef Ogden, R.W.: Large deformation isotropic elasticity - On the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem. Technol. 46(2), 398–416 (1973)CrossRef
14.
go back to reference Lepie, A., Adicoff, A.: Dynamic mechanical behavior of highly filled polymers: Dewetting effect. J. Appl. Polym. Sci. 16(5), 1155–1166 (1972)CrossRef Lepie, A., Adicoff, A.: Dynamic mechanical behavior of highly filled polymers: Dewetting effect. J. Appl. Polym. Sci. 16(5), 1155–1166 (1972)CrossRef
15.
go back to reference Mullins, L.: Effects of stretching on the properties of rubber. Rubber Chem. Technol. 21(2), 281–300 (1948)CrossRef Mullins, L.: Effects of stretching on the properties of rubber. Rubber Chem. Technol. 21(2), 281–300 (1948)CrossRef
16.
go back to reference Lion, A.: A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech. Thermodyn. 8(3), 153–169 (1996)ADSMathSciNetCrossRef Lion, A.: A constitutive model for carbon black filled rubber: experimental investigations and mathematical representation. Continuum Mech. Thermodyn. 8(3), 153–169 (1996)ADSMathSciNetCrossRef
17.
go back to reference Kakavas, P.A., Chang, W.V.: Acoustic emission in bonded elastomer discs subjected to uniform tension. J. Appl. Polym. Sci. 42(6), 1997–2004 (1991)CrossRef Kakavas, P.A., Chang, W.V.: Acoustic emission in bonded elastomer discs subjected to uniform tension. J. Appl. Polym. Sci. 42(6), 1997–2004 (1991)CrossRef
18.
go back to reference Kakavas, P.A.: New development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J. Appl. Polym. Sci. 77(3), 660–672 (2000)CrossRef Kakavas, P.A.: New development of the strain energy function for hyperelastic materials using a logarithmic strain approach. J. Appl. Polym. Sci. 77(3), 660–672 (2000)CrossRef
19.
go back to reference Kasner, A.I., Meinecke, E.A.: Porosity in rubber, a review. Rubber Chem. Technol. 69(3), 424–443 (1996)CrossRef Kasner, A.I., Meinecke, E.A.: Porosity in rubber, a review. Rubber Chem. Technol. 69(3), 424–443 (1996)CrossRef
20.
go back to reference Kasner, A.I., Meinecke, E.A.: Effect of porosity on dynamic mechanical properties of rubber in compression. Rubber Chem. Technol. 69(2), 223–233 (1996)CrossRef Kasner, A.I., Meinecke, E.A.: Effect of porosity on dynamic mechanical properties of rubber in compression. Rubber Chem. Technol. 69(2), 223–233 (1996)CrossRef
21.
go back to reference Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1921)ADSMATH Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1921)ADSMATH
22.
go back to reference Stoll, R.D., Freudenthal, A.M., Heller, R.A.: Effects of mean pressure on the behavior of a filled elastomer. Exp. Mech. 7(9), 339–345 (1967)CrossRef Stoll, R.D., Freudenthal, A.M., Heller, R.A.: Effects of mean pressure on the behavior of a filled elastomer. Exp. Mech. 7(9), 339–345 (1967)CrossRef
23.
go back to reference Buswell, H.J.: The effect of pressure on the flow properties of filled polyisobutylene. Rheol. Acta 13(3), 571–576 (1974)CrossRef Buswell, H.J.: The effect of pressure on the flow properties of filled polyisobutylene. Rheol. Acta 13(3), 571–576 (1974)CrossRef
24.
go back to reference Oberth, A.E.: Principle of strength reinforcement in filled polymers. Rubber Chem. Technol. 40, 1337–1362 (1967)CrossRef Oberth, A.E.: Principle of strength reinforcement in filled polymers. Rubber Chem. Technol. 40, 1337–1362 (1967)CrossRef
25.
go back to reference Blatz, P.J., Sharda, S.C., Tschoegl, N.W.: Strain energy function for rubberlike materials based on a generalized measure of strain. Trans. Soc. Rheol. 18(1), 145–161 (1974)CrossRef Blatz, P.J., Sharda, S.C., Tschoegl, N.W.: Strain energy function for rubberlike materials based on a generalized measure of strain. Trans. Soc. Rheol. 18(1), 145–161 (1974)CrossRef
26.
go back to reference Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)ADSCrossRef Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues-with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987)ADSCrossRef
27.
go back to reference Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73(3), 504–523 (2000)CrossRef Boyce, M.C., Arruda, E.M.: Constitutive models of rubber elasticity: a review. Rubber Chem. Technol. 73(3), 504–523 (2000)CrossRef
28.
go back to reference Warren, N.: Theoretical calculation of the compressibility of porous media. J. Geophys. Res. 78(2), 352–362 (1973)ADSCrossRef Warren, N.: Theoretical calculation of the compressibility of porous media. J. Geophys. Res. 78(2), 352–362 (1973)ADSCrossRef
29.
go back to reference Tobolsky, A.V., Shen, M.C.: Thermoelasticity, chain conformation, and the equation of state for rubber networks. J. Appl. Phys. 37(5), 1952–1955 (1966)ADSCrossRef Tobolsky, A.V., Shen, M.C.: Thermoelasticity, chain conformation, and the equation of state for rubber networks. J. Appl. Phys. 37(5), 1952–1955 (1966)ADSCrossRef
30.
go back to reference Misra, A., Singh, V.: Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech. Thermodyn. 27(4–5), 787–817 (2015)ADSMathSciNetCrossRef Misra, A., Singh, V.: Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech. Thermodyn. 27(4–5), 787–817 (2015)ADSMathSciNetCrossRef
31.
go back to reference Jia, H., Misra, A., Poorsolhjouy, P., Liu, C.: Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater. Des. 115, 422–432 (2017)CrossRef Jia, H., Misra, A., Poorsolhjouy, P., Liu, C.: Optimal structural topology of materials with micro-scale tension-compression asymmetry simulated using granular micromechanics. Mater. Des. 115, 422–432 (2017)CrossRef
32.
go back to reference Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids 26(5), 738–770 (2021)MathSciNetCrossRef Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids 26(5), 738–770 (2021)MathSciNetCrossRef
Metadata
Title
Nonlinear analysis for propellant solids
Authors
Panayiotis A. Kakavas-Papaniaros
Georgios I. Giannopoulos
Publication date
07-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01111-w

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners