Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

02-07-2022 | Original Article

Generalized Gibbs–Appell’s equations and two-dimensional finite elements model used in flexible multibody analysis

Authors: Sorin Vlase, Marin Marin, Andreas Öchsner, Maria Luminita Scutaru

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A planar mechanism represents a mechanism that is frequently used in engineering, and very often, the elasticity of some elements of the mechanism cannot be neglected. Consideration of all rigid elements does not allow the analysis of vibrations or situations of loss of stability of some elements. Gibbs–Appell’s generalized equations are used in this paper to obtain the governing equations for a two-dimensional finite element, which is in plane motion. Using Lagrange’s equations is the most widely used way for researchers to address such a problem. This is mainly due to the familiarity of researchers with this robust calculation method. There are two major advantages of applying this formalism: a smaller number of differentiation operations is needed to be performed and, by eliminating Lagrange multipliers, the number of unknowns decreases significantly. The method is applied for the plane multibody systems with elastic elements. We hope that this method, due to its simplicity, will be interesting for mechanical designers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)ADSCrossRef Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)ADSCrossRef
2.
go back to reference Erdman, A.G., Sandor, G.N., Oakberg, A.: A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Manuf. Sci. Eng. Trans. ASME 94(4), 1193–1205 (1972)CrossRef Erdman, A.G., Sandor, G.N., Oakberg, A.: A general method for kineto-elastodynamic analysis and synthesis of mechanisms. J. Manuf. Sci. Eng. Trans. ASME 94(4), 1193–1205 (1972)CrossRef
3.
go back to reference Sung, C.K.: An experimental study on the nonlinear elastic dynamic response of linkage mechanism. Mech. Mach. Theory 21, 121–133 (1986)CrossRef Sung, C.K.: An experimental study on the nonlinear elastic dynamic response of linkage mechanism. Mech. Mach. Theory 21, 121–133 (1986)CrossRef
4.
go back to reference Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)CrossRef Deü, J.-F., Galucio, A.C., Ohayon, R.: Dynamic responses of flexible-link mechanisms with passive/active damping treatment. Comput. Struct. 86(3–5), 258–265 (2008)CrossRef
5.
go back to reference Fanghella, P., Galletti, C., Torre, G.: An explicit independent-coordinate formulation for the equations of motion of flexible multibody systems. Mech. Mach. Theory 38, 417–437 (2003)MathSciNetCrossRef Fanghella, P., Galletti, C., Torre, G.: An explicit independent-coordinate formulation for the equations of motion of flexible multibody systems. Mech. Mach. Theory 38, 417–437 (2003)MathSciNetCrossRef
6.
go back to reference Gerstmayr, J., Schöberl, J.: A 3d finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)MathSciNetCrossRef Gerstmayr, J., Schöberl, J.: A 3d finite element method for flexible multibody systems. Multibody Syst. Dyn. 15(4), 305–320 (2006)MathSciNetCrossRef
7.
go back to reference Hou, W., Zhang, X.: Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 319(1–2), 570–592 (2009)ADSCrossRef Hou, W., Zhang, X.: Dynamic analysis of flexible linkage mechanisms under uniform temperature change. J. Sound Vib. 319(1–2), 570–592 (2009)ADSCrossRef
8.
go back to reference Marin, M., Othman, M.I.A., Abbas, I.A.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)CrossRef Marin, M., Othman, M.I.A., Abbas, I.A.: An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids. J. Comput. Theor. Nanosci. 12(8), 1594–1598 (2015)CrossRef
9.
go back to reference Khang, N.V.: Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems. Mech. Res. Commun. 38(4), 294–299 (2011)CrossRef Khang, N.V.: Kronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems. Mech. Res. Commun. 38(4), 294–299 (2011)CrossRef
10.
go back to reference Khulief, Y.A.: On the finite element dynamic analysis of flexible mechanisms. Comput. Methods Appl. Mech. Eng. 97(1), 23–32 (1992)ADSMathSciNetCrossRef Khulief, Y.A.: On the finite element dynamic analysis of flexible mechanisms. Comput. Methods Appl. Mech. Eng. 97(1), 23–32 (1992)ADSMathSciNetCrossRef
11.
go back to reference Itu, C., Öchsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233(8), 1585–1593 (2019) Itu, C., Öchsner, A., Vlase, S., Marin, M.: Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233(8), 1585–1593 (2019)
12.
go back to reference Scutaru, M.L., et al.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020(1), Art. No. 104 (2020) Scutaru, M.L., et al.: New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl. 2020(1), Art. No. 104 (2020)
13.
go back to reference Appell, P.: Traité de Mécanique Rationnelle: Dynamique Des Systèmes. Wentworth Press, London (2018)MATH Appell, P.: Traité de Mécanique Rationnelle: Dynamique Des Systèmes. Wentworth Press, London (2018)MATH
14.
go back to reference Emam, S.A.: Generalized Lagrange’s equations for systems with general constraints and distributed parameters. Multibody Syst Dyn. 49(1), 95–117 (2020)MathSciNetCrossRef Emam, S.A.: Generalized Lagrange’s equations for systems with general constraints and distributed parameters. Multibody Syst Dyn. 49(1), 95–117 (2020)MathSciNetCrossRef
15.
go back to reference Pennestri’, E., de Falco, D., Vita, L.: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics by means of the Udwadia-Kalaba formulation. J Aerosp. Eng. 22(4), 365–372 (2009)CrossRef Pennestri’, E., de Falco, D., Vita, L.: An investigation of the influence of pseudoinverse matrix calculations on multibody dynamics by means of the Udwadia-Kalaba formulation. J Aerosp. Eng. 22(4), 365–372 (2009)CrossRef
16.
go back to reference Öchsner, A., Makvandi, R.: Plane Finite Elements for Two-Dimensional Problems: Application of the Computer Algebra System Maxima. Springer, Cham (2021)CrossRef Öchsner, A., Makvandi, R.: Plane Finite Elements for Two-Dimensional Problems: Application of the Computer Algebra System Maxima. Springer, Cham (2021)CrossRef
17.
go back to reference Shi, Y.M., Li, Z.F., Hua, H.X., Fu, Z.F., Liu, T.X.: The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib. 245(5), 785–800 (2001)ADSCrossRef Shi, Y.M., Li, Z.F., Hua, H.X., Fu, Z.F., Liu, T.X.: The modelling and vibration control of beams with active constrained layer damping. J. Sound Vib. 245(5), 785–800 (2001)ADSCrossRef
18.
go back to reference Simeon, B.: On Lagrange multipliers in flexible multibody dynamic. Comput. Methods Appl. Mech. Eng. 195(50–51), 6993–7005 (2006)ADSMathSciNetCrossRef Simeon, B.: On Lagrange multipliers in flexible multibody dynamic. Comput. Methods Appl. Mech. Eng. 195(50–51), 6993–7005 (2006)ADSMathSciNetCrossRef
19.
go back to reference Vlase, S.: Dynamical response of a multibody system with flexible elements with a general three dimensional motion. Rom. J. Phys. 57(3–4), 676–693 (2012) Vlase, S.: Dynamical response of a multibody system with flexible elements with a general three dimensional motion. Rom. J. Phys. 57(3–4), 676–693 (2012)
20.
go back to reference Negrean, I., Crisan, A.V., Vlase, S.: A new approach in analytical dynamics of mechanical systems. Symmetry 2020(12), 1–24, Art. No. 95 (2020) Negrean, I., Crisan, A.V., Vlase, S.: A new approach in analytical dynamics of mechanical systems. Symmetry 2020(12), 1–24, Art. No. 95 (2020)
21.
go back to reference Negrean, I.: Advanced notions in analytical dynamics of systems. Acta Tech. Napocensis Appl. Math. Mech. Eng. 60(4), 491–502 (2017) Negrean, I.: Advanced notions in analytical dynamics of systems. Acta Tech. Napocensis Appl. Math. Mech. Eng. 60(4), 491–502 (2017)
22.
go back to reference Vlase, S., Negrean, I., Marin, M., Nastac, S.: Kane’s method-based simulation and modeling robots with elastic elements. Using Finite Elem. Methods Math. 2020(8), 1–23 (2020). (Art. No. 805) Vlase, S., Negrean, I., Marin, M., Nastac, S.: Kane’s method-based simulation and modeling robots with elastic elements. Using Finite Elem. Methods Math. 2020(8), 1–23 (2020). (Art. No. 805)
23.
go back to reference Dowell, E.: Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints. Nonlinear Dyn. 88(2), 1093–1097 (2017)MathSciNetCrossRef Dowell, E.: Hamilton’s principle and Hamilton’s equations with holonomic and non-holonomic constraints. Nonlinear Dyn. 88(2), 1093–1097 (2017)MathSciNetCrossRef
24.
go back to reference Sklar, L.: Hamilton’s Equations. Philosophy and the Foundations of Dynamics. Cambridge University Press, Cambridge (2013)MATH Sklar, L.: Hamilton’s Equations. Philosophy and the Foundations of Dynamics. Cambridge University Press, Cambridge (2013)MATH
25.
go back to reference Tong, M.M.: Flexible multibody dynamics formulation by Hamilton’s equations. Int. Mech. Eng. Congr. Expos. 2010 8, 725–734 (2012) Tong, M.M.: Flexible multibody dynamics formulation by Hamilton’s equations. Int. Mech. Eng. Congr. Expos. 2010 8, 725–734 (2012)
26.
go back to reference Hobiny, A., et al.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), Art. No. 602 (2020) Hobiny, A., et al.: The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 12(4), Art. No. 602 (2020)
27.
go back to reference Vlase, S., Negrean, I., Marin, M., Scutaru, M.L.: Energy of accelerations used to obtain the motion equations of a three-dimensional finite element. Symmetry 12, 2020 (2020). (Art. No. 321)CrossRef Vlase, S., Negrean, I., Marin, M., Scutaru, M.L.: Energy of accelerations used to obtain the motion equations of a three-dimensional finite element. Symmetry 12, 2020 (2020). (Art. No. 321)CrossRef
28.
go back to reference Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method, 2nd edn. Springer, Singapore (2020)CrossRef Öchsner, A.: Computational Statics and Dynamics: An Introduction Based on the Finite Element Method, 2nd edn. Springer, Singapore (2020)CrossRef
29.
go back to reference Vlase, S., Marin, M., Ochsner, A., Scutaru, M.L.: Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Therm. 31(3), 715–724 (2019) Vlase, S., Marin, M., Ochsner, A., Scutaru, M.L.: Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Therm. 31(3), 715–724 (2019)
Metadata
Title
Generalized Gibbs–Appell’s equations and two-dimensional finite elements model used in flexible multibody analysis
Authors
Sorin Vlase
Marin Marin
Andreas Öchsner
Maria Luminita Scutaru
Publication date
02-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01119-2

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners