Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 5/2022

05-05-2022 | Original Article

Finite strain expansion/contraction of a hollow sphere made of strain- and rate- hardening material

Authors: Sergei Alexandrov, Yeau-Ren Jeng

Published in: Continuum Mechanics and Thermodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a semi-analytic rigid/plastic solution for the expansion/contraction of a hollow sphere at large strains. The yield stress depends on the equivalent strain rate and the equivalent strain. No restriction is imposed on this dependence. The solution reduces to a single ordinary differential equation for determining the radial stress. The independent variable in this equation is the equivalent strain. Moreover, the equivalent strain rate is expressed in terms of elementary functions of the equivalent strain, which allows for representing the yield stress as a function of the equivalent strain and a time-like independent variable. In the course of deriving the equations above, the transformation between Eulerian and Lagrangian coordinates is used. A numerical example illustrates the solution for a material model available in the literature. The motivation of this research is that solutions for the expansion/contraction of a hollow sphere are widely used at the micro-level to calculate some material properties at the macro-level. To this end, it is necessary to specify constitutive equations for micromechanical modeling. The accuracy of these equations is questionable. An advantage of the solution found is that it is practically analytic for quite a general material model that accounts for both strain- and rate-hardening. Therefore, it is straightforward to generate a large amount of theoretical data for comparing with measurable quantities at the macro-level.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)MATH Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)MATH
2.
go back to reference Durban, D., Baruch, M.: Analysis of an elasto-plastic thick walled sphere loaded by internal and external pressure. Int. J. Non-Linear Mech. 12, 9–21 (1977)ADSCrossRef Durban, D., Baruch, M.: Analysis of an elasto-plastic thick walled sphere loaded by internal and external pressure. Int. J. Non-Linear Mech. 12, 9–21 (1977)ADSCrossRef
3.
go back to reference Carroll, M.M., Kim, K.T.: Pressure-density equations for porous metals and metal powders. Powder Metall. 27, 153–159 (1984)CrossRef Carroll, M.M., Kim, K.T.: Pressure-density equations for porous metals and metal powders. Powder Metall. 27, 153–159 (1984)CrossRef
4.
go back to reference Wilkinson, D.S., Ashby, M.F.: Pressure sintering by power law creep. Acta Metall. 23, 1277–1285 (1975)CrossRef Wilkinson, D.S., Ashby, M.F.: Pressure sintering by power law creep. Acta Metall. 23, 1277–1285 (1975)CrossRef
5.
go back to reference Haghi, M., Anand, L.: Analysis of strain-hardening viscoplastic thick-walled sphere and cylinder under external pressure. Int. J. Plast. 7, 123–140 (1991)CrossRef Haghi, M., Anand, L.: Analysis of strain-hardening viscoplastic thick-walled sphere and cylinder under external pressure. Int. J. Plast. 7, 123–140 (1991)CrossRef
6.
go back to reference Thore, P., Pastor, F., Pastor, J., Kondo, D.: Closed-form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings. C. R. Mec. 337, 260–267 (2009)ADSCrossRef Thore, P., Pastor, F., Pastor, J., Kondo, D.: Closed-form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings. C. R. Mec. 337, 260–267 (2009)ADSCrossRef
7.
go back to reference Johnson, G.R., Cook, W.Y.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef Johnson, G.R., Cook, W.Y.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef
8.
go back to reference Meyer, H.W., Jr., Kleponis, D.S.: Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int. J. Impact Eng. 26, 509–521 (2001)CrossRef Meyer, H.W., Jr., Kleponis, D.S.: Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration. Int. J. Impact Eng. 26, 509–521 (2001)CrossRef
9.
go back to reference Siegel, A., Laporte, S., Sauter-Starace, F.: Johnson–Cook parameter identification for commercially pure titanium at room temperature under quasi-static strain rates. Materials 14, Article 3887 (2021) Siegel, A., Laporte, S., Sauter-Starace, F.: Johnson–Cook parameter identification for commercially pure titanium at room temperature under quasi-static strain rates. Materials 14, Article 3887 (2021)
10.
go back to reference Ashrafian, M.M., Kordkheili, S.A.H.: A novel phenomenological constitutive model for Ti–6Al–4V at high temperature conditions and quasi-static strain rates. Proc. IMechE Part G J. Aerosp. Eng. 235(13), 1831–1842 (2021)CrossRef Ashrafian, M.M., Kordkheili, S.A.H.: A novel phenomenological constitutive model for Ti–6Al–4V at high temperature conditions and quasi-static strain rates. Proc. IMechE Part G J. Aerosp. Eng. 235(13), 1831–1842 (2021)CrossRef
11.
go back to reference Alister, F., Celentano, D., Signorelli, J., Bouchard, P.-O., Munoz, D.P., Cruchaga, M.: Viscoplastic and temperature behavior of Zn–Cu–Ti alloy sheets: experiments, characterization, and modeling. J. Mater. Res. Technol. 15, 3759–3772 (2021)CrossRef Alister, F., Celentano, D., Signorelli, J., Bouchard, P.-O., Munoz, D.P., Cruchaga, M.: Viscoplastic and temperature behavior of Zn–Cu–Ti alloy sheets: experiments, characterization, and modeling. J. Mater. Res. Technol. 15, 3759–3772 (2021)CrossRef
12.
go back to reference Rusinek, A., Zaera, R., Klepaczko, J.R.: Constitutive relations in 3-D for a wide range of strain rates and temperatures—application to mild steels. Int. J. Solids Struct. 44, 5611–5634 (2007)CrossRef Rusinek, A., Zaera, R., Klepaczko, J.R.: Constitutive relations in 3-D for a wide range of strain rates and temperatures—application to mild steels. Int. J. Solids Struct. 44, 5611–5634 (2007)CrossRef
13.
go back to reference Jia, B., Rusinek, A., Pesci, R., Bahi, S., Bernier, R.: Thermo-viscoplastic behavior of 304 austenitic stainless steel at various strain rates and temperatures: testing, modeling and validation. Int. J. Mech. Sci. 170, 105356 (2020)CrossRef Jia, B., Rusinek, A., Pesci, R., Bahi, S., Bernier, R.: Thermo-viscoplastic behavior of 304 austenitic stainless steel at various strain rates and temperatures: testing, modeling and validation. Int. J. Mech. Sci. 170, 105356 (2020)CrossRef
14.
go back to reference Cheng, W., Outeiro, J., Costes, J.-P., M’Saoubi, R., Karaouni, H., Denguir, L., Astakhov, V., Auzenat, F.: Constitutive model incorporating the strain-rate and state of stress effects for machining simulation of titanium alloy Ti6Al4V. Proc. CIRP 77, 344–347 (2018)CrossRef Cheng, W., Outeiro, J., Costes, J.-P., M’Saoubi, R., Karaouni, H., Denguir, L., Astakhov, V., Auzenat, F.: Constitutive model incorporating the strain-rate and state of stress effects for machining simulation of titanium alloy Ti6Al4V. Proc. CIRP 77, 344–347 (2018)CrossRef
15.
go back to reference Cheng, W., Outeiro, J., Costes, J.-P., M’Saoubi, R., Karaouni, H., Astakhov, V.: A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Mech. Mater. 137, 103103 (2019)CrossRef Cheng, W., Outeiro, J., Costes, J.-P., M’Saoubi, R., Karaouni, H., Astakhov, V.: A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Mech. Mater. 137, 103103 (2019)CrossRef
16.
go back to reference Dos Santos, T., Outeiro, J.C., Rossi, R., Rosa, P.: A new methodology for evaluation of mechanical properties of materials at very high rates of loading. Proc. CIRP 58, 481–486 (2017)CrossRef Dos Santos, T., Outeiro, J.C., Rossi, R., Rosa, P.: A new methodology for evaluation of mechanical properties of materials at very high rates of loading. Proc. CIRP 58, 481–486 (2017)CrossRef
17.
go back to reference Kim, H., Yoon, J.W., Chung, K., Lee, M.-G.: A multiplicative plastic hardening model in consideration of strain softening and strain rate: theoretical derivation and characterization of model parameters with simple tension and creep test. Int. J. Mech. Sci. 187, 105913 (2020)CrossRef Kim, H., Yoon, J.W., Chung, K., Lee, M.-G.: A multiplicative plastic hardening model in consideration of strain softening and strain rate: theoretical derivation and characterization of model parameters with simple tension and creep test. Int. J. Mech. Sci. 187, 105913 (2020)CrossRef
18.
go back to reference Attar, H.R., Li, N., Foster, A.: A method for determining equivalent hardening responses to approximate sheet metal viscoplasticity. MethodsX 8, 101554 (2021)CrossRef Attar, H.R., Li, N., Foster, A.: A method for determining equivalent hardening responses to approximate sheet metal viscoplasticity. MethodsX 8, 101554 (2021)CrossRef
19.
go back to reference Bodner, S.R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. Trans. ASME J. Appl. Mech. 42, 385–389 (1975)ADSCrossRef Bodner, S.R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. Trans. ASME J. Appl. Mech. 42, 385–389 (1975)ADSCrossRef
20.
go back to reference Leu, S.-Y.: Analytical and numerical investigation of strain-hardening viscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis. Comput. Methods Appl. Mech. Eng. 196, 2713–2722 (2007)ADSCrossRef Leu, S.-Y.: Analytical and numerical investigation of strain-hardening viscoplastic thick-walled cylinders under internal pressure by using sequential limit analysis. Comput. Methods Appl. Mech. Eng. 196, 2713–2722 (2007)ADSCrossRef
21.
go back to reference Leu, S.-Y.: Limit analysis of strain-hardening viscoplastic cylinders under internal pressure by using the velocity control: analytical and numerical investigation. Int. J. Mech. Sci. 50, 1578–1585 (2008)CrossRef Leu, S.-Y.: Limit analysis of strain-hardening viscoplastic cylinders under internal pressure by using the velocity control: analytical and numerical investigation. Int. J. Mech. Sci. 50, 1578–1585 (2008)CrossRef
22.
go back to reference Leu, S.-Y.: Investigation of rotating hollow cylinders of strain-hardening viscoplastic materials by sequential limit analysis. Comput. Methods Appl. Mech. Eng. 197, 4858–4865 (2008)ADSCrossRef Leu, S.-Y.: Investigation of rotating hollow cylinders of strain-hardening viscoplastic materials by sequential limit analysis. Comput. Methods Appl. Mech. Eng. 197, 4858–4865 (2008)ADSCrossRef
23.
go back to reference Alexandrov, S., Hwang, Y.-M.: Plane strain bending with isotropic strain hardening at large strains. Trans. ASME J. Appl. Mech. 77, 064502 (2010)ADSCrossRef Alexandrov, S., Hwang, Y.-M.: Plane strain bending with isotropic strain hardening at large strains. Trans. ASME J. Appl. Mech. 77, 064502 (2010)ADSCrossRef
24.
go back to reference Alexandrov, S., Pirumov, A., Jeng, Y.-R.: Expansion/contraction of a spherical elastic/plastic shell revisited. Contin. Mech. Thermodyn. 27, 483–494 (2015)ADSMathSciNetCrossRef Alexandrov, S., Pirumov, A., Jeng, Y.-R.: Expansion/contraction of a spherical elastic/plastic shell revisited. Contin. Mech. Thermodyn. 27, 483–494 (2015)ADSMathSciNetCrossRef
25.
go back to reference Alexandrov, S., Jeng, Y.-R.: An elastic/plastic solution for a hollow sphere subject to thermo-mechanical loading considering temperature dependent material properties. Int. J. Solids Struct. 200–201, 23–33 (2020)CrossRef Alexandrov, S., Jeng, Y.-R.: An elastic/plastic solution for a hollow sphere subject to thermo-mechanical loading considering temperature dependent material properties. Int. J. Solids Struct. 200–201, 23–33 (2020)CrossRef
26.
go back to reference Collins, I.F., Meguid, S.A.: On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip. ASME J. Appl. Mech. 44, 271–278 (1977)ADSCrossRef Collins, I.F., Meguid, S.A.: On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip. ASME J. Appl. Mech. 44, 271–278 (1977)ADSCrossRef
27.
go back to reference Adams, M.J., Briscoe, B.J., Corfield, G.M., Lawrence, C.J., Papathanasiou, T.D.: An analysis of the plane-strain compression of viscoplastic materials. ASME J. Appl. Mech. 64, 420–424 (1997)ADSCrossRef Adams, M.J., Briscoe, B.J., Corfield, G.M., Lawrence, C.J., Papathanasiou, T.D.: An analysis of the plane-strain compression of viscoplastic materials. ASME J. Appl. Mech. 64, 420–424 (1997)ADSCrossRef
28.
go back to reference Alexandrov, S., Jeng, Y.-R.: Compression of viscoplastic material between rotating plates. ASME J. Appl. Mech. 76, 031017 (2009)ADSCrossRef Alexandrov, S., Jeng, Y.-R.: Compression of viscoplastic material between rotating plates. ASME J. Appl. Mech. 76, 031017 (2009)ADSCrossRef
29.
go back to reference Roberts, S.M., Hall, F., Van Bael, A., Hartley, P., Pillinger, I., Sturgess, E.N., Van Houtte, P., Aernoudt, E.: Benchmark tests for 3-D, elasto-plastic, finite-element codes for the modelling of metal forming processes. J. Mater. Process. Technol. 34, 61–68 (1992)CrossRef Roberts, S.M., Hall, F., Van Bael, A., Hartley, P., Pillinger, I., Sturgess, E.N., Van Houtte, P., Aernoudt, E.: Benchmark tests for 3-D, elasto-plastic, finite-element codes for the modelling of metal forming processes. J. Mater. Process. Technol. 34, 61–68 (1992)CrossRef
30.
go back to reference Abali, B.E., Reich, F.A.: Verification of deforming polarized structure computation by using a closed-form solution. Contin. Mech. Thermodyn. 32, 693–708 (2020)ADSMathSciNetCrossRef Abali, B.E., Reich, F.A.: Verification of deforming polarized structure computation by using a closed-form solution. Contin. Mech. Thermodyn. 32, 693–708 (2020)ADSMathSciNetCrossRef
31.
go back to reference Lee, Y., Dawson, P.R.: Obtaining residual stresses in metal forming after neglecting elasticity on loading. ASME J. Appl. Mech. 56, 318–327 (1989)ADSCrossRef Lee, Y., Dawson, P.R.: Obtaining residual stresses in metal forming after neglecting elasticity on loading. ASME J. Appl. Mech. 56, 318–327 (1989)ADSCrossRef
Metadata
Title
Finite strain expansion/contraction of a hollow sphere made of strain- and rate- hardening material
Authors
Sergei Alexandrov
Yeau-Ren Jeng
Publication date
05-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 5/2022
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01103-w

Other articles of this Issue 5/2022

Continuum Mechanics and Thermodynamics 5/2022 Go to the issue

Premium Partners