Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Sonochemistry

Authors : Rachel Pflieger, Sergey I. Nikitenko, Carlos Cairós, Robert Mettin

Published in: Characterization of Cavitation Bubbles and Sonoluminescence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sonochemical splitting of thermodynamically very stable water molecule provides the evidence for drastic conditions inside the cavitation bubble. Kinetics of OH radicals or H2O2 molecules formation during sonolysis of water can be used for quantification of acoustic power delivered to the system. This chapter focuses on the influence of several fundamental parameters, such as ultrasonic frequency, saturating gas, and some soluble nitrogen compounds on chemical reactivity of multibubble cavitation in homogeneous aqueous media in connection with the recent data on multibubble sonoluminescence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves. I. A preliminary survey. J Am Chem Soc 49:3086–3100CrossRef Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves. I. A preliminary survey. J Am Chem Soc 49:3086–3100CrossRef
2.
go back to reference Schmitt FO, Johnson CH, O AR (1929) Oxidation promoted by ultrasonic radiation. J Am Chem Soc 51:370–375CrossRef Schmitt FO, Johnson CH, O AR (1929) Oxidation promoted by ultrasonic radiation. J Am Chem Soc 51:370–375CrossRef
3.
go back to reference Wu TY, Guo N, Teh CY, Hay JXW (2013) Advances in ultrasound technology for environmental remediation. Springer, DordrechtCrossRef Wu TY, Guo N, Teh CY, Hay JXW (2013) Advances in ultrasound technology for environmental remediation. Springer, DordrechtCrossRef
4.
go back to reference Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55CrossRef Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11:47–55CrossRef
5.
go back to reference Xu HX, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRef Xu HX, Zeiger BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567CrossRef
6.
go back to reference Chave T, Navarro NM, Nitsche S, Nikitenko SI (2012) Mechanism of PtIV Sonochemical Reduction in formic acid media and pure water. Chem Eur J 18:3879–3885CrossRef Chave T, Navarro NM, Nitsche S, Nikitenko SI (2012) Mechanism of PtIV Sonochemical Reduction in formic acid media and pure water. Chem Eur J 18:3879–3885CrossRef
7.
go back to reference Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164CrossRef Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164CrossRef
8.
go back to reference Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370CrossRef Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370CrossRef
9.
go back to reference Herzberg G (1979) Molecular spectra and molecular structure: constants of diatomic molecules. Van Nostrand, New York Herzberg G (1979) Molecular spectra and molecular structure: constants of diatomic molecules. Van Nostrand, New York
10.
go back to reference Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803 Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C2Σ+) and OH(A2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803
11.
go back to reference Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T (2013) Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochem 20:366–372CrossRef Ebrahiminia A, Mokhtari-Dizaji M, Toliyat T (2013) Correlation between iodide dosimetry and terephthalic acid dosimetry to evaluate the reactive radical production due to the acoustic cavitation activity. Ultrason Sonochem 20:366–372CrossRef
12.
go back to reference Ouerhani T, Pflieger R, Ben Messaoud W, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2−Ar mixtures. J Phys Chem B 119:15885–15891CrossRef Ouerhani T, Pflieger R, Ben Messaoud W, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2−Ar mixtures. J Phys Chem B 119:15885–15891CrossRef
13.
go back to reference Abeledo CA, Kolthoff IM (1931) The reaction between nitrite and iodide and its application to the iodometric titration of these anions. J Am Chem Soc 53:2893–2897CrossRef Abeledo CA, Kolthoff IM (1931) The reaction between nitrite and iodide and its application to the iodometric titration of these anions. J Am Chem Soc 53:2893–2897CrossRef
14.
go back to reference Couto AB, de Souza DC, Sartori ER, Jacob P, Klockow D, Neves EA (2006) The catalytic cycle of oxidation of iodide ion in the oxygen/nitrous acid/nitric oxide system and its potential for analytical applications. Anal Lett 39:2763–2774CrossRef Couto AB, de Souza DC, Sartori ER, Jacob P, Klockow D, Neves EA (2006) The catalytic cycle of oxidation of iodide ion in the oxygen/nitrous acid/nitric oxide system and its potential for analytical applications. Anal Lett 39:2763–2774CrossRef
15.
go back to reference Mark G, Tauber A, Rudiger LA, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52CrossRef Mark G, Tauber A, Rudiger LA, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52CrossRef
16.
go back to reference Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58:873–879CrossRef Chang CY, Hsieh YH, Cheng KY, Hsieh LL, Cheng TC, Yao KS (2008) Effect of pH on Fenton process using estimation of hydroxyl radical with salicylic acid as trapping reagent. Water Sci Technol 58:873–879CrossRef
17.
go back to reference Milne L, Stewart I, Bremner DH (2013) Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem 20:984–989CrossRef Milne L, Stewart I, Bremner DH (2013) Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter. Ultrason Sonochem 20:984–989CrossRef
18.
go back to reference Nikitenko SI, Le Naour C, Moisy P (2007) Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem 14:330–336CrossRef Nikitenko SI, Le Naour C, Moisy P (2007) Comparative study of sonochemical reactors with different geometry using thermal and chemical probes. Ultrason Sonochem 14:330–336CrossRef
19.
go back to reference Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175CrossRef Pflieger R, Chave T, Vite G, Jouve L, Nikitenko SI (2015) Effect of operational conditions on sonoluminescence and kinetics of H2O2 formation during the sonolysis of water in the presence of Ar/O2 gas mixture. Ultrason Sonochem 26:169–175CrossRef
20.
go back to reference Mason TJ, Lorimer JP (1989) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Prentice Hall, New Jersey Mason TJ, Lorimer JP (1989) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Prentice Hall, New Jersey
21.
go back to reference Petrier C, Jeunet A, Luche JL, Reverdy G (1992) Unexpected frequency-effects on the rate of oxidative processes induced by ultrasound. J Am Chem Soc 114:3148–3150CrossRef Petrier C, Jeunet A, Luche JL, Reverdy G (1992) Unexpected frequency-effects on the rate of oxidative processes induced by ultrasound. J Am Chem Soc 114:3148–3150CrossRef
22.
go back to reference Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802CrossRef Beckett MA, Hua I (2001) Impact of ultrasonic frequency on aqueous sonoluminescence and sonochemistry. J Phys Chem A 105:3796–3802CrossRef
23.
go back to reference Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150CrossRef Kanthale P, Ashokkumar M, Grieser F (2008) Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem 15:143–150CrossRef
24.
go back to reference Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867CrossRef Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867CrossRef
25.
go back to reference Navarro NM, Chave T, Pochon P, Bisel I, Nikitenko SI (2011) Effect of ultrasonic frequency on the mechanism of formic acid sonolysis. J Phys Chem B 115:2024–2029CrossRef Navarro NM, Chave T, Pochon P, Bisel I, Nikitenko SI (2011) Effect of ultrasonic frequency on the mechanism of formic acid sonolysis. J Phys Chem B 115:2024–2029CrossRef
26.
go back to reference Fischer CH, Hart EJ, Henglein A (1986) Ultrasonic irradiation of water in the presence of 18,18O2—isotope exchange and isotopic distribution of H2O2. J Phys Chem 90:1954–1956 Fischer CH, Hart EJ, Henglein A (1986) Ultrasonic irradiation of water in the presence of 18,18O2—isotope exchange and isotopic distribution of H2O2. J Phys Chem 90:1954–1956
27.
go back to reference Petrier C, Combet E, Mason T (2007) Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason Sonochem 14:117–121CrossRef Petrier C, Combet E, Mason T (2007) Oxygen-induced concurrent ultrasonic degradation of volatile and non-volatile aromatic compounds. Ultrason Sonochem 14:117–121CrossRef
28.
go back to reference Wagatsuma K, Hirokawa K (1995) Effect of oxygen addition to an argon glow-discharge plasma source in atomic-emission spectrometry. Anal Chim Acta 306:193–200CrossRef Wagatsuma K, Hirokawa K (1995) Effect of oxygen addition to an argon glow-discharge plasma source in atomic-emission spectrometry. Anal Chim Acta 306:193–200CrossRef
29.
go back to reference Shultes H, Gohr H (1936) Über chemische Wirkungen der Ultraschallwellen. Angew Chem 49:420–423CrossRef Shultes H, Gohr H (1936) Über chemische Wirkungen der Ultraschallwellen. Angew Chem 49:420–423CrossRef
30.
go back to reference Misik V, Riesz P (1999) Detection of primary free radical species in aqueous sonochemistry by EPR spectroscopy. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence, pp 225–236CrossRef Misik V, Riesz P (1999) Detection of primary free radical species in aqueous sonochemistry by EPR spectroscopy. In: Crum LA, Mason TJ, Reisse JL, Suslick KS (eds) Sonochemistry and sonoluminescence, pp 225–236CrossRef
31.
go back to reference Wakeford CA, Blackburn R, Lickiss PD (1999) Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason Sonochem 6:141–148CrossRef Wakeford CA, Blackburn R, Lickiss PD (1999) Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason Sonochem 6:141–148CrossRef
32.
go back to reference Hart EJ, Fischer CH, Henglein A (1986) Isotopic exchange in the sonolysis of aqueous-solutions containing 14,14N2 and 15,15N2. J Phys Chem 90:5989–5991 Hart EJ, Fischer CH, Henglein A (1986) Isotopic exchange in the sonolysis of aqueous-solutions containing 14,14N2 and 15,15N2. J Phys Chem 90:5989–5991
33.
go back to reference Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279 Pflieger R, Ouerhani T, Belmonte T, Nikitenko SI (2017) Use of NH (A3Πi-X3 Σ-) sonoluminescence for diagnostics of nonequilibrium plasma produced by multibubble cavitation. Phys Chem Chem Phys 19:26272–26279
34.
go back to reference Nikitenko SI, Martinez P, Chave T, Billy I (2009) Sonochemical disproportionation of carbon monoxide in water: evidence for treanor effect during multibubble cavitation. Angewandte Chemie-International Edition 48:9529–9532CrossRef Nikitenko SI, Martinez P, Chave T, Billy I (2009) Sonochemical disproportionation of carbon monoxide in water: evidence for treanor effect during multibubble cavitation. Angewandte Chemie-International Edition 48:9529–9532CrossRef
35.
go back to reference Fridman A (2008) Plasma chemistry. Cambridge University Press Fridman A (2008) Plasma chemistry. Cambridge University Press
36.
37.
go back to reference Navarro NM, Pflieger R, Nikitenko SI (2014) Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis. Ultrason Sonochem 21:1026–1029CrossRef Navarro NM, Pflieger R, Nikitenko SI (2014) Multibubble sonoluminescence as a tool to study the mechanism of formic acid sonolysis. Ultrason Sonochem 21:1026–1029CrossRef
38.
go back to reference Kumari S, Keswani M, Singh S, Beck M, Liebscher E, Deymier P, Raghavan S (2011) Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectron Eng 88:3437–3441CrossRef Kumari S, Keswani M, Singh S, Beck M, Liebscher E, Deymier P, Raghavan S (2011) Control of sonoluminescence signal in deionized water using carbon dioxide. Microelectron Eng 88:3437–3441CrossRef
39.
go back to reference Henglein A (1985) Sonolysis of Carbon-dioxide, nitrous-oxide and methane in aqueous-solution, Zeitschrift Fur Naturforschung Section B-a. J Chem Sci 40:100–107 Henglein A (1985) Sonolysis of Carbon-dioxide, nitrous-oxide and methane in aqueous-solution, Zeitschrift Fur Naturforschung Section B-a. J Chem Sci 40:100–107
40.
go back to reference Harada H (1998) Sonochemical reduction of carbon dioxide. Ultrason Sonochem 5:73–77CrossRef Harada H (1998) Sonochemical reduction of carbon dioxide. Ultrason Sonochem 5:73–77CrossRef
Metadata
Title
Sonochemistry
Authors
Rachel Pflieger
Sergey I. Nikitenko
Carlos Cairós
Robert Mettin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-11717-7_3