Skip to main content
Top
Published in: Wireless Networks 4/2019

06-07-2018

Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network

Authors: Yulong Gao, Yanping Chen

Published in: Wireless Networks | Issue 4/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spectrum sensing plays a foundational role in cognitive radio sensor networks. However, only the methods with low computational complexity can be utilized due to energy restriction of sensor node. To this end, a novel frequency-domain spectrum sensing method is presented to satisfy corresponding requirements of cognitive radio sensor networks. Only the maximum value of power spectrum density is utilized as test statistic to reduce the computational complexity. According to the dependence of 2L real parts and imaginary parts of the maximum value of power spectrum density, we model the maximum value of power spectrum density as the central Chi-square distribution for the \(H_0\) case and non-central Chi-square distribution for the \(H_1\) case. Exploiting resulting distributions, we derive the analytic expressions for the detection probability and the false-alarm probability. Additionally, the computational complexity of the proposed method is quantitatively analyzed. Finally, we certify the proposed test statistic and the probability distribution of the maximum value of power spectrum density and evaluate the impact of some parameters on the detection performance experimentally. The theoretical analysis and simulation results demonstrate that the proposed algorithm can offer high performance gains over the existing time-domain detection method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef Wang, B., & Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.CrossRef
2.
go back to reference Mitola, J., & Maguire, G, Jr. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communications, 9(6), 13–18.CrossRef Mitola, J., & Maguire, G, Jr. (1999). Cognitive radio: Making software radio more personal. IEEE Personal Communications, 9(6), 13–18.CrossRef
3.
go back to reference Haykin, S. (2005). Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
4.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRef
5.
go back to reference Axell, E., Leus, G., Larsson, E. G., et al. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., et al. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef
6.
go back to reference Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio AD Hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRef Akyildiz, I. F., Lee, W. Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio AD Hoc networks. Ad Hoc Networks, 7(5), 810–836.CrossRef
7.
go back to reference Akan, O., Karli, O., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRef Akan, O., Karli, O., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRef
8.
go back to reference Monemian, M., Mahdavi, M., & Omidi, M. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829–1841.CrossRef Monemian, M., Mahdavi, M., & Omidi, M. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829–1841.CrossRef
9.
go back to reference Baradkar, H. M., & Akojwar, S. G. (2014). Implementation of energy detection method for spectrum sensing in cognitive radio based embedded wireless sensor network node. In 2014 International conference on electronic systems, signal processing and computing technologies (ICESC) (pp. 490–495). Baradkar, H. M., & Akojwar, S. G. (2014). Implementation of energy detection method for spectrum sensing in cognitive radio based embedded wireless sensor network node. In 2014 International conference on electronic systems, signal processing and computing technologies (ICESC) (pp. 490–495).
10.
go back to reference Saberali, S. A., & Beaulieu, N. C. (2014). Matched-filter detection of the presence of MPSK signals. In 2014 International symposium on information theory and its applications (ISITA) (pp. 85–89). Saberali, S. A., & Beaulieu, N. C. (2014). Matched-filter detection of the presence of MPSK signals. In 2014 International symposium on information theory and its applications (ISITA) (pp. 85–89).
11.
go back to reference Zhi, T., Tafesse, Y., & Sadle, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.CrossRef Zhi, T., Tafesse, Y., & Sadle, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.CrossRef
12.
go back to reference Sedighi, S., Taherpour, A., Khattab, T., & Hasna, M. O.(2014). Multiple antenna cyclostationary-based detection of primary users with multiple cyclic frequency in cognitive radios. In Globecom 2014-cognitive radio and networks symposium (pp. 799–804). Sedighi, S., Taherpour, A., Khattab, T., & Hasna, M. O.(2014). Multiple antenna cyclostationary-based detection of primary users with multiple cyclic frequency in cognitive radios. In Globecom 2014-cognitive radio and networks symposium (pp. 799–804).
13.
go back to reference Zeng, Y., & Liang, Y.-C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef Zeng, Y., & Liang, Y.-C. (2009). Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6), 1784–1793.CrossRef
14.
go back to reference Shakir, M. Z., Rao, A., & Alouini, M.-S. (2013). Generalized mean detector for collaborative spectrum sensing. IEEE Transactions on Communications, 61(4), 1242–1253.CrossRef Shakir, M. Z., Rao, A., & Alouini, M.-S. (2013). Generalized mean detector for collaborative spectrum sensing. IEEE Transactions on Communications, 61(4), 1242–1253.CrossRef
15.
go back to reference Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2013). Eigenvalue-based sensing and SNR estimation for cognitive radio in presence of noise correlation. IEEE Transactions on Vehicular Technology, 62(8), 3671–3684.CrossRef Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2013). Eigenvalue-based sensing and SNR estimation for cognitive radio in presence of noise correlation. IEEE Transactions on Vehicular Technology, 62(8), 3671–3684.CrossRef
16.
go back to reference Mustapha, I., Ali, B. M., Sali, A., & Rasid, M. F. A.(2014). Energy-aware cluster based cooperative spectrum sensing for cognitive radio sensor networks. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT) (pp. 45–50). Mustapha, I., Ali, B. M., Sali, A., & Rasid, M. F. A.(2014). Energy-aware cluster based cooperative spectrum sensing for cognitive radio sensor networks. In 2014 IEEE 2nd international symposium on telecommunication technologies (ISTT) (pp. 45–50).
17.
go back to reference Huang, X., Fei, H., Jun, W., Chen, H.-H., Wang, G., & Jiang, T. (2015). Intelligent cooperative spectrum sensing via hierarchical dirichlet process in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 33(5), 771–787.CrossRef Huang, X., Fei, H., Jun, W., Chen, H.-H., Wang, G., & Jiang, T. (2015). Intelligent cooperative spectrum sensing via hierarchical dirichlet process in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 33(5), 771–787.CrossRef
18.
go back to reference Qu, Z., Xu, Y., & Yin, S. (2014). A novel clustering-based spectrum sensing in cognitive radio wireless sensor networks. 2014 IEEE 3rd international conference on cloud computing and intelligence systems (CCIS) (pp. 695–699). Qu, Z., Xu, Y., & Yin, S. (2014). A novel clustering-based spectrum sensing in cognitive radio wireless sensor networks. 2014 IEEE 3rd international conference on cloud computing and intelligence systems (CCIS) (pp. 695–699).
19.
go back to reference Ergul, O., & Akan, O. B. (2014). Cooperative coarse spectrum sensing for cognitive radio sensor networks. IEEE Wireless Communications & Networking Conference, 23(4), 2055–2060. Ergul, O., & Akan, O. B. (2014). Cooperative coarse spectrum sensing for cognitive radio sensor networks. IEEE Wireless Communications & Networking Conference, 23(4), 2055–2060.
20.
go back to reference Matinmikko, M., Sarvanko, H., Mustonen, M., & Mammela, A. (2009). Performance of spectrum sensing using Welch’s periodogram in rayleigh fading channel. In Proceedings of the 4th international conference on CROWNCOM (pp. 1–5). Matinmikko, M., Sarvanko, H., Mustonen, M., & Mammela, A. (2009). Performance of spectrum sensing using Welch’s periodogram in rayleigh fading channel. In Proceedings of the 4th international conference on CROWNCOM (pp. 1–5).
21.
go back to reference Gismalla, E. H., & Alsusa, E. (2011). Performance analysis of the periodogram-based energy detector in fading channels. IEEE Transactions on Signal Processing, 59(8), 3712–3721.MathSciNetCrossRefMATH Gismalla, E. H., & Alsusa, E. (2011). Performance analysis of the periodogram-based energy detector in fading channels. IEEE Transactions on Signal Processing, 59(8), 3712–3721.MathSciNetCrossRefMATH
22.
go back to reference Gismalla, E. H., & Alsusa, E. (2012). On the performance of energy detection using Bartlett’s estimate for spectrum sensing in cognitive radio systems. IEEE Transactions on Signal Processing, 60(7), 3394–3404.MathSciNetCrossRefMATH Gismalla, E. H., & Alsusa, E. (2012). On the performance of energy detection using Bartlett’s estimate for spectrum sensing in cognitive radio systems. IEEE Transactions on Signal Processing, 60(7), 3394–3404.MathSciNetCrossRefMATH
23.
go back to reference Dikmese, E., Ilyas, Z., Sofotasios, P. C., Renfors, M., & Valkama, M. (2017). Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation. IEEE Journal on Selected Areas in Communications, 35(1), 159–172. Dikmese, E., Ilyas, Z., Sofotasios, P. C., Renfors, M., & Valkama, M. (2017). Sparse frequency domain spectrum sensing and sharing based on cyclic prefix autocorrelation. IEEE Journal on Selected Areas in Communications, 35(1), 159–172.
24.
go back to reference Sabahi, M. F., Masoumzadeh, M., & Forouzan, A. R. (2016). Frequency-domain wideband compressive spectrum sensing. IET Commun., 10(13), 1655–1664.CrossRef Sabahi, M. F., Masoumzadeh, M., & Forouzan, A. R. (2016). Frequency-domain wideband compressive spectrum sensing. IET Commun., 10(13), 1655–1664.CrossRef
25.
go back to reference Simon, M. K. (2006). Probability distributions involving gaussian random variables: A handbook for engineers and scientists. New York: Springer. Simon, M. K. (2006). Probability distributions involving gaussian random variables: A handbook for engineers and scientists. New York: Springer.
26.
go back to reference Proakis, J. G., & Manolakis, D. G. (2007). Digital signal processing (4th ed.). Upper Saddle River: Pearson Prentice Hall. Proakis, J. G., & Manolakis, D. G. (2007). Digital signal processing (4th ed.). Upper Saddle River: Pearson Prentice Hall.
27.
go back to reference Oppenheim, A. V., & Schafer, R. W. (1999). Discrete-time signal processing. Upper Saddle River: Prentice Hall.MATH Oppenheim, A. V., & Schafer, R. W. (1999). Discrete-time signal processing. Upper Saddle River: Prentice Hall.MATH
Metadata
Title
Spectrum sensing exploiting the maximum value of power spectrum density in wireless sensor network
Authors
Yulong Gao
Yanping Chen
Publication date
06-07-2018
Publisher
Springer US
Published in
Wireless Networks / Issue 4/2019
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1789-x

Other articles of this Issue 4/2019

Wireless Networks 4/2019 Go to the issue