Skip to main content
Top

2017 | OriginalPaper | Chapter

14. Spin Quantum Computing with Endohedral Fullerenes

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter reviews the present state of the art in using the endohedral fullerenes N@C60 and P@C60 as qubits in a spin quantum computer. After a brief introduction to spin quantum computing (Sect. 14.1), we first discuss (Sect. 14.2) the rich spin structure of these endohedral fullerenes and specific theoretical proposals for architectures and operation models leading to a scalable quantum computer. We then briefly discuss (Sect. 14.3) those aspects of materials science that are needed to realize the proposed architectures. The central part of this chapter (Sect. 14.4) is a review of quantum operations and entanglement realized with endohedral fullerenes. Finally, we review (Sect. 14.5) efforts to realize single spin detection of endohedral fullerenes and conclude (Sect. 14.6) with a brief outlook on outstanding problems to be solved for obtaining a scalable quantum register.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488CrossRef Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488CrossRef
2.
go back to reference Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc A Math Phys Eng Sci 400:97–117CrossRef Deutsch D (1985) Quantum theory, the church-turing principle and the universal quantum computer. Proc R Soc A Math Phys Eng Sci 400:97–117CrossRef
4.
go back to reference Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113CrossRef Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113CrossRef
5.
6.
go back to reference Jones MAG, Morton JJL, Taylor RA, Ardavan A, Briggs GAD (2006) PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys status solidi 243:3037–3041CrossRef Jones MAG, Morton JJL, Taylor RA, Ardavan A, Briggs GAD (2006) PL, magneto-PL and PLE of the trimetallic nitride template fullerene Er3N@C80. Phys status solidi 243:3037–3041CrossRef
7.
go back to reference Brown RM et al (2010) Electron spin coherence in metallofullerenes: Y, Sc, and La@C82. Phys Rev B 82:33410 Brown RM et al (2010) Electron spin coherence in metallofullerenes: Y, Sc, and La@C82. Phys Rev B 82:33410
8.
go back to reference Schoenfeld RS, Harneit W, Paech M (2006) Pulsed and cw EPR studies on hydrogen atoms encaged in octasilsesquioxane molecules. Phys status solidi 243:3008–3012CrossRef Schoenfeld RS, Harneit W, Paech M (2006) Pulsed and cw EPR studies on hydrogen atoms encaged in octasilsesquioxane molecules. Phys status solidi 243:3008–3012CrossRef
9.
go back to reference Mitrikas G, Efthimiadou EK, Kordas G (2014) Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling. Phys Chem Chem Phys 16:2378–2383CrossRef Mitrikas G, Efthimiadou EK, Kordas G (2014) Extending the electron spin coherence time of atomic hydrogen by dynamical decoupling. Phys Chem Chem Phys 16:2378–2383CrossRef
10.
go back to reference Cory DG et al (2000) NMR based quantum information processing: achievements and prospects. Fortschritte der Phys 48:875–907CrossRef Cory DG et al (2000) NMR based quantum information processing: achievements and prospects. Fortschritte der Phys 48:875–907CrossRef
11.
go back to reference Vandersypen LMK et al (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883–887CrossRef Vandersypen LMK et al (2001) Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883–887CrossRef
13.
go back to reference Jones JA (2000) NMR quantum computation: a critical evaluation. Fortschritte der Phys 48:909–924CrossRef Jones JA (2000) NMR quantum computation: a critical evaluation. Fortschritte der Phys 48:909–924CrossRef
14.
go back to reference Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137CrossRef Kane BE (1998) A silicon-based nuclear spin quantum computer. Nature 393:133–137CrossRef
15.
16.
go back to reference Laucht A et al (2015) Electrically controlling single-spin qubits in a continuous microwave field. Sci Adv 1:e1500022–e1500022CrossRef Laucht A et al (2015) Electrically controlling single-spin qubits in a continuous microwave field. Sci Adv 1:e1500022–e1500022CrossRef
17.
go back to reference Pla JJ et al (2012) A single-atom electron spin qubit in silicon. Nature 489:541–545CrossRef Pla JJ et al (2012) A single-atom electron spin qubit in silicon. Nature 489:541–545CrossRef
18.
go back to reference Pla JJ et al (2013) High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496:334–338CrossRef Pla JJ et al (2013) High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496:334–338CrossRef
19.
go back to reference Gruber A et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014 Gruber A et al (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014
20.
go back to reference Jelezko F et al (2004) Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 93:130501CrossRef Jelezko F et al (2004) Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 93:130501CrossRef
21.
go back to reference Childress L, Hanson R (2013) Diamond NV centers for quantum computing and quantum networks. MRS Bull 38:134–138CrossRef Childress L, Hanson R (2013) Diamond NV centers for quantum computing and quantum networks. MRS Bull 38:134–138CrossRef
22.
go back to reference Orwa JO et al (2010) Fabrication of single optical centres in diamond—a review. J Lumin 130:1646–1654CrossRef Orwa JO et al (2010) Fabrication of single optical centres in diamond—a review. J Lumin 130:1646–1654CrossRef
23.
go back to reference Grinolds MS et al (2014) Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat Nanotechnol 9:279–284CrossRef Grinolds MS et al (2014) Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat Nanotechnol 9:279–284CrossRef
24.
go back to reference Bhallamudi VP, Hammel PC (2015) Nitrogen–vacancy centres: nanoscale MRI. Nat Nanotechnol 10:104–106CrossRef Bhallamudi VP, Hammel PC (2015) Nitrogen–vacancy centres: nanoscale MRI. Nat Nanotechnol 10:104–106CrossRef
25.
go back to reference Harneit W (2002) Fullerene-based electron-spin quantum computer. Phys Rev A 65:32322CrossRef Harneit W (2002) Fullerene-based electron-spin quantum computer. Phys Rev A 65:32322CrossRef
26.
go back to reference Ardavan A et al (2003) Nanoscale solid-state quantum computing. Philos Trans R Soc A 361:1473–1485CrossRef Ardavan A et al (2003) Nanoscale solid-state quantum computing. Philos Trans R Soc A 361:1473–1485CrossRef
27.
go back to reference Meyer C, Harneit W, Weidinger A, Lips K (2002) Experimental steps towards the realisation of a fullerene quantum computer. Phys status solidi 233:462–466CrossRef Meyer C, Harneit W, Weidinger A, Lips K (2002) Experimental steps towards the realisation of a fullerene quantum computer. Phys status solidi 233:462–466CrossRef
28.
go back to reference Vinit, Sujith SV, Ramachandran CN (2016) Spin-spin coupling in nitrogen atom encapsulated C60, C59 N, and their respective dimers. J Phys Chem A 120:6990–6997 Vinit, Sujith SV, Ramachandran CN (2016) Spin-spin coupling in nitrogen atom encapsulated C60, C59 N, and their respective dimers. J Phys Chem A 120:6990–6997
29.
go back to reference Almeida Murphy T et al (1996) Observation of atom like nitrogen in nitrogen-implanted solid C60. Phys Rev Lett 77:1075–1078CrossRef Almeida Murphy T et al (1996) Observation of atom like nitrogen in nitrogen-implanted solid C60. Phys Rev Lett 77:1075–1078CrossRef
30.
go back to reference Greer JC (2000) The atomic nature of endohedrally encapsulated nitrogen N@C60 studied by density functional and Hartree-Fock methods. Chem Phys Lett 326:567–572CrossRef Greer JC (2000) The atomic nature of endohedrally encapsulated nitrogen N@C60 studied by density functional and Hartree-Fock methods. Chem Phys Lett 326:567–572CrossRef
31.
go back to reference Knapp C et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95:999–1004CrossRef Knapp C et al (1998) Electron paramagnetic resonance study of atomic phosphorus encapsulated in [60]fullerene. Mol Phys 95:999–1004CrossRef
32.
go back to reference Larsson JA, Greer JC, Harneit W, Weidinger A (2002) Phosphorous trapped within buckminsterfullerene. J Chem Phys 116:7849CrossRef Larsson JA, Greer JC, Harneit W, Weidinger A (2002) Phosphorous trapped within buckminsterfullerene. J Chem Phys 116:7849CrossRef
33.
go back to reference Gün A, Gençten A (2011) Three-qubit quantum entanglement for SI (S = 3/2, I = 1/2) spin system. Int J Quantum Inf 9:1635–1642CrossRef Gün A, Gençten A (2011) Three-qubit quantum entanglement for SI (S = 3/2, I = 1/2) spin system. Int J Quantum Inf 9:1635–1642CrossRef
34.
go back to reference Gün A, Çakmak S, Gençten A (2013) Construction of four-qubit quantum entanglement for SI (S = 3/2, I = 3/2) spin system. Quantum Inf Process 12:205–215CrossRef Gün A, Çakmak S, Gençten A (2013) Construction of four-qubit quantum entanglement for SI (S = 3/2, I = 3/2) spin system. Quantum Inf Process 12:205–215CrossRef
35.
go back to reference Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67:52318CrossRef Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67:52318CrossRef
36.
go back to reference Teles J et al (2012) Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei. Philos Trans R Soc A 370:4770–4793CrossRef Teles J et al (2012) Quantum information processing by nuclear magnetic resonance on quadrupolar nuclei. Philos Trans R Soc A 370:4770–4793CrossRef
37.
go back to reference Gedik Z et al (2015) Computational speed-up with a single qudit. Sci Rep 5:14671CrossRef Gedik Z et al (2015) Computational speed-up with a single qudit. Sci Rep 5:14671CrossRef
38.
go back to reference Harneit W, Huebener K, Naydenov B, Schaefer S, Scheloske M (2007) N@C60 quantum bit engineering. Phys status solidi 244:3879–3884CrossRef Harneit W, Huebener K, Naydenov B, Schaefer S, Scheloske M (2007) N@C60 quantum bit engineering. Phys status solidi 244:3879–3884CrossRef
39.
go back to reference Suter D, Lim K (2002) Scalable architecture for spin-based quantum computers with a single type of gate. Phys Rev A 65:52309CrossRef Suter D, Lim K (2002) Scalable architecture for spin-based quantum computers with a single type of gate. Phys Rev A 65:52309CrossRef
40.
go back to reference Ju C, Suter D, Du J (2007) Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys Rev A 75:12318CrossRef Ju C, Suter D, Du J (2007) Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys Rev A 75:12318CrossRef
41.
go back to reference Ju C, Suter D, Du J (2011) An endohedral fullerene-based nuclear spin quantum computer. Phys Lett A 375:1441–1444CrossRef Ju C, Suter D, Du J (2011) An endohedral fullerene-based nuclear spin quantum computer. Phys Lett A 375:1441–1444CrossRef
42.
go back to reference Waiblinger M et al (2000) Magnetic interaction in diluted N@C60. AIP Conference Proceedings 544:195–198(AIP) Waiblinger M et al (2000) Magnetic interaction in diluted N@C60. AIP Conference Proceedings 544:195–198(AIP)
43.
go back to reference Heiney PA et al (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914CrossRef Heiney PA et al (1991) Orientational ordering transition in solid C60. Phys Rev Lett 66:2911–2914CrossRef
44.
go back to reference Harneit W, Meyer C, Weidinger A, Suter D, Twamley J (2002) Architectures for a spin quantum computer based on endohedral fullerenes. Phys status solidi 233:453–461CrossRef Harneit W, Meyer C, Weidinger A, Suter D, Twamley J (2002) Architectures for a spin quantum computer based on endohedral fullerenes. Phys status solidi 233:453–461CrossRef
45.
go back to reference Yang WL, Xu ZY, Wei H, Feng M, Suter D (2010) Quantum-information-processing architecture with endohedral fullerenes in a carbon nanotube. Phys Rev A 81:32303CrossRef Yang WL, Xu ZY, Wei H, Feng M, Suter D (2010) Quantum-information-processing architecture with endohedral fullerenes in a carbon nanotube. Phys Rev A 81:32303CrossRef
46.
go back to reference Kamenev DI, Berman GP, Tsifrinovich VI (2006) Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits. Phys Rev A 73:62336CrossRef Kamenev DI, Berman GP, Tsifrinovich VI (2006) Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits. Phys Rev A 73:62336CrossRef
47.
go back to reference Feng M, Twamley J (2004) Selective pulse implementation of two-qubit gates for spin-3/2-based fullerene quantum-information processing. Phys Rev A 70:32318CrossRef Feng M, Twamley J (2004) Selective pulse implementation of two-qubit gates for spin-3/2-based fullerene quantum-information processing. Phys Rev A 70:32318CrossRef
48.
go back to reference Morton JJL et al (2006) Bang–bang control of fullerene qubits using ultrafast phase gates. Nat Phys 2:40–43CrossRef Morton JJL et al (2006) Bang–bang control of fullerene qubits using ultrafast phase gates. Nat Phys 2:40–43CrossRef
49.
go back to reference Hu YM, Yang WL, Feng M, Du JF (2009) Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Phys Rev A 80:22322CrossRef Hu YM, Yang WL, Feng M, Du JF (2009) Distributed quantum-information processing with fullerene-caged electron spins in distant nanotubes. Phys Rev A 80:22322CrossRef
50.
go back to reference Pietzak B, Weidinger A, Dinse K-P, Hirsch A (2002) In: Akasaka T, Nagase S (eds) Endofullerenes: a new family of carbon clusters. Springer, Netherlands, pp 13–65. doi:10.1007/978-94-015-9938-2_2 Pietzak B, Weidinger A, Dinse K-P, Hirsch A (2002) In: Akasaka T, Nagase S (eds) Endofullerenes: a new family of carbon clusters. Springer, Netherlands, pp 13–65. doi:10.​1007/​978-94-015-9938-2_​2
51.
go back to reference Porfyrakis K (2016) In: Popov AA (ed) Endohedral fullerenes: electron transfer and spin. Springer, Verlag Porfyrakis K (2016) In: Popov AA (ed) Endohedral fullerenes: electron transfer and spin. Springer, Verlag
52.
go back to reference Jakes P, Dinse K-P, Meyer C, Harneit W, Weidinger A (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5:4080CrossRef Jakes P, Dinse K-P, Meyer C, Harneit W, Weidinger A (2003) Purification and optical spectroscopy of N@C60. Phys Chem Chem Phys 5:4080CrossRef
53.
go back to reference Zhang J et al (2006) The effects of a pyrrolidine functional group on the magnetic properties of N@C60. Chem Phys Lett 432:523–527CrossRef Zhang J et al (2006) The effects of a pyrrolidine functional group on the magnetic properties of N@C60. Chem Phys Lett 432:523–527CrossRef
54.
go back to reference Waiblinger M et al (2001) Corrected article: thermal stability of the endohedral fullerenes N@C60, N@C70, and P@C60. Phys Rev B 64:159901CrossRef Waiblinger M et al (2001) Corrected article: thermal stability of the endohedral fullerenes N@C60, N@C70, and P@C60. Phys Rev B 64:159901CrossRef
55.
go back to reference Tóth S et al (2008) Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes. Phys Rev B 77:214409CrossRef Tóth S et al (2008) Enhanced thermal stability and spin-lattice relaxation rate of N@C60 inside carbon nanotubes. Phys Rev B 77:214409CrossRef
56.
go back to reference Eckardt M, Wieczorek R, Harneit W (2015) Stability of C60 and N@C60 under thermal and optical exposure. Carbon N Y 95:601–607CrossRef Eckardt M, Wieczorek R, Harneit W (2015) Stability of C60 and N@C60 under thermal and optical exposure. Carbon N Y 95:601–607CrossRef
57.
go back to reference Zhou S, Rašović I, Briggs GAD, Porfyrakis K (2015) Synthesis of the first completely spin-compatible N@C60 cyclopropane derivatives by carefully tuning the DBU base catalyst. Chem Commun 51:7096–7099CrossRef Zhou S, Rašović I, Briggs GAD, Porfyrakis K (2015) Synthesis of the first completely spin-compatible N@C60 cyclopropane derivatives by carefully tuning the DBU base catalyst. Chem Commun 51:7096–7099CrossRef
58.
go back to reference Pong W-T, Durkan C, Li H, Harneit W (2006) Strategies for the deposition of free radical organic molecules for scanning-probe microscopy experiments. J Scanning Probe Microsc 1:55–62CrossRef Pong W-T, Durkan C, Li H, Harneit W (2006) Strategies for the deposition of free radical organic molecules for scanning-probe microscopy experiments. J Scanning Probe Microsc 1:55–62CrossRef
59.
go back to reference Červenka J, Flipse CFJ (2010) Fullerene monolayer formation by spray coating. Nanotechnology 21:65302CrossRef Červenka J, Flipse CFJ (2010) Fullerene monolayer formation by spray coating. Nanotechnology 21:65302CrossRef
60.
go back to reference Simon F et al (2004) Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem Phys Lett 383:362–367CrossRef Simon F et al (2004) Low temperature fullerene encapsulation in single wall carbon nanotubes: synthesis of N@C60@SWCNT. Chem Phys Lett 383:362–367CrossRef
61.
go back to reference Khlobystov AN et al (2004) Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. J Mater Chem 14:2852CrossRef Khlobystov AN et al (2004) Low temperature assembly of fullerene arrays in single-walled carbon nanotubes using supercritical fluids. J Mater Chem 14:2852CrossRef
62.
go back to reference Diaconescu B et al (2009) Molecular self-assembly of functionalized fullerenes on a metal surface. Phys Rev Lett 102:56102CrossRef Diaconescu B et al (2009) Molecular self-assembly of functionalized fullerenes on a metal surface. Phys Rev Lett 102:56102CrossRef
63.
go back to reference Deak DS, Silly F, Porfyrakis K, Castell MR (2006) Template ordered open-grid arrays of paired endohedral fullerenes. J Am Chem Soc 128:13976–13977CrossRef Deak DS, Silly F, Porfyrakis K, Castell MR (2006) Template ordered open-grid arrays of paired endohedral fullerenes. J Am Chem Soc 128:13976–13977CrossRef
64.
go back to reference Jakes P et al (2002) Electron paramagnetic resonance investigation of endohedral fullerenes N@C60 and N@C70 in a liquid crystal. J Magn Reson 156:303–308CrossRef Jakes P et al (2002) Electron paramagnetic resonance investigation of endohedral fullerenes N@C60 and N@C70 in a liquid crystal. J Magn Reson 156:303–308CrossRef
65.
go back to reference Meyer C et al (2002) Alignment of the endohedral fullerenes N@C60 and N@C70 in a liquid crystal matrix. Phys Rev A 65:61201CrossRef Meyer C et al (2002) Alignment of the endohedral fullerenes N@C60 and N@C70 in a liquid crystal matrix. Phys Rev A 65:61201CrossRef
66.
go back to reference Liu G et al (2013) Alignment of N@C60 derivatives in a liquid crystal matrix. J Phys Chem B 117:5925–5931CrossRef Liu G et al (2013) Alignment of N@C60 derivatives in a liquid crystal matrix. J Phys Chem B 117:5925–5931CrossRef
67.
go back to reference Naydenov B et al (2006) Ordered inclusion of endohedral fullerenes N@C60 and P@C60 in a crystalline matrix. Chem Phys Lett 424:327–332CrossRef Naydenov B et al (2006) Ordered inclusion of endohedral fullerenes N@C60 and P@C60 in a crystalline matrix. Chem Phys Lett 424:327–332CrossRef
68.
go back to reference Naydenov B, Mende J, Harneit W, Mehring M (2008) Entanglement in P@C60 encapsulated in a solid state matrix. Phys status solidi 245:2002–2005CrossRef Naydenov B, Mende J, Harneit W, Mehring M (2008) Entanglement in P@C60 encapsulated in a solid state matrix. Phys status solidi 245:2002–2005CrossRef
69.
go back to reference Rabl P et al (2010) A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat Phys 6:602–608CrossRef Rabl P et al (2010) A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat Phys 6:602–608CrossRef
70.
go back to reference Borneman TW, Granade CE, Cory DG (2012) Parallel information transfer in a multinode quantum information processor. Phys Rev Lett 108:140502CrossRef Borneman TW, Granade CE, Cory DG (2012) Parallel information transfer in a multinode quantum information processor. Phys Rev Lett 108:140502CrossRef
71.
go back to reference Dinse K-P, Käß H, Knapp C, Weiden N (2000) EPR investigation of atoms in chemical traps. Carbon N Y 38:1635–1640CrossRef Dinse K-P, Käß H, Knapp C, Weiden N (2000) EPR investigation of atoms in chemical traps. Carbon N Y 38:1635–1640CrossRef
72.
go back to reference Meyer C, Harneit W, Naydenov B, Lips K, Weidinger A (2004) N@C60 and P@C60 as quantum bits. Appl Magn Reson 27:123–132CrossRef Meyer C, Harneit W, Naydenov B, Lips K, Weidinger A (2004) N@C60 and P@C60 as quantum bits. Appl Magn Reson 27:123–132CrossRef
73.
go back to reference Wakahara T, Kato T, Miyazawa K, Harneit W (2012) N@C60 as a structural probe for fullerene nanomaterials. Carbon N Y 50:1709–1712CrossRef Wakahara T, Kato T, Miyazawa K, Harneit W (2012) N@C60 as a structural probe for fullerene nanomaterials. Carbon N Y 50:1709–1712CrossRef
74.
go back to reference Dietel E et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121:2432–2437CrossRef Dietel E et al (1999) Atomic nitrogen encapsulated in fullerenes: effects of cage variations. J Am Chem Soc 121:2432–2437CrossRef
75.
go back to reference Franco L et al (2006) Synthesis and magnetic properties of N@C60 derivatives. Chem Phys Lett 422:100–105CrossRef Franco L et al (2006) Synthesis and magnetic properties of N@C60 derivatives. Chem Phys Lett 422:100–105CrossRef
76.
go back to reference Goedde B et al (2001) ‘Nitrogen doped’ C60 dimers (N@C60–C60). Chem Phys Lett 334:12–17 Goedde B et al (2001) ‘Nitrogen doped’ C60 dimers (N@C60–C60). Chem Phys Lett 334:12–17
77.
go back to reference Plant SR et al (2013) A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem. Sci. 4:2971CrossRef Plant SR et al (2013) A two-step approach to the synthesis of N@C60 fullerene dimers for molecular qubits. Chem. Sci. 4:2971CrossRef
78.
go back to reference Farrington BJ et al (2012) Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew Chemie 124:3647–3650CrossRef Farrington BJ et al (2012) Chemistry at the nanoscale: synthesis of an N@C60-N@C60 endohedral fullerene dimer. Angew Chemie 124:3647–3650CrossRef
79.
go back to reference Yang J et al (2012) Probing the zero-field splitting in the ordered N@C60 in buckycatcher C60H28 studied by EPR spectroscopy. Phys Lett A 376:1748–1751CrossRef Yang J et al (2012) Probing the zero-field splitting in the ordered N@C60 in buckycatcher C60H28 studied by EPR spectroscopy. Phys Lett A 376:1748–1751CrossRef
80.
go back to reference Gil-Ramírez G et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547CrossRef Gil-Ramírez G et al (2010) A cyclic porphyrin trimer as a receptor for fullerenes. Org Lett 12:3544–3547CrossRef
81.
go back to reference Couderc G, Hulliger J (2010) Channel forming organic crystals: guest alignment and properties. Chem Soc Rev 39:1545CrossRef Couderc G, Hulliger J (2010) Channel forming organic crystals: guest alignment and properties. Chem Soc Rev 39:1545CrossRef
82.
go back to reference Naydenov B et al (2006) N@C60 and N@C70 oriented in a single-crystalline matrix. Phys status solidi 243:2995–2998CrossRef Naydenov B et al (2006) N@C60 and N@C70 oriented in a single-crystalline matrix. Phys status solidi 243:2995–2998CrossRef
83.
go back to reference Morton JJL et al (2006) Electron spin relaxation of N@C60 in CS2. J Chem Phys 124:14508CrossRef Morton JJL et al (2006) Electron spin relaxation of N@C60 in CS2. J Chem Phys 124:14508CrossRef
84.
go back to reference Brown RM et al (2011) Coherent state transfer between an electron and nuclear spin in 15N@C60. Phys Rev Lett 106:110504CrossRef Brown RM et al (2011) Coherent state transfer between an electron and nuclear spin in 15N@C60. Phys Rev Lett 106:110504CrossRef
85.
go back to reference Morton JJL et al (2007) Environmental effects on electron spin relaxation in N@C60. Phys Rev B 76:85418CrossRef Morton JJL et al (2007) Environmental effects on electron spin relaxation in N@C60. Phys Rev B 76:85418CrossRef
86.
go back to reference Menéndez J, Page JB (2000) Light scattering in solids VIII. In: Cardona M, Güntherodt G (eds) Topics in applied physics, vol 76. Spinger, Berlin, Heidelberg, pp 27–95 Menéndez J, Page JB (2000) Light scattering in solids VIII. In: Cardona M, Güntherodt G (eds) Topics in applied physics, vol 76. Spinger, Berlin, Heidelberg, pp 27–95
87.
go back to reference Knorr SB (2002) ESR studies of the electronic properties of fullerenes and their compounds (in German). PhD thesis. Universitaet Stuttgart, Germany Knorr SB (2002) ESR studies of the electronic properties of fullerenes and their compounds (in German). PhD thesis. Universitaet Stuttgart, Germany
88.
go back to reference Morton JJL et al (2005) A new mechanism for electron spin echo envelope modulation. J Chem Phys 122:174504CrossRef Morton JJL et al (2005) A new mechanism for electron spin echo envelope modulation. J Chem Phys 122:174504CrossRef
89.
go back to reference Meyer C (2003) Endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet Berlin, Germany Meyer C (2003) Endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet Berlin, Germany
90.
go back to reference Naydenov B (2006) Encapsulation of endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet, Berlin Naydenov B (2006) Encapsulation of endohedral fullerenes for quantum computing. PhD thesis. Freie Universitaet, Berlin
91.
go back to reference Morley GW et al (2007) Efficient dynamic nuclear polarization at high magnetic fields. Phys Rev Lett 98:220501CrossRef Morley GW et al (2007) Efficient dynamic nuclear polarization at high magnetic fields. Phys Rev Lett 98:220501CrossRef
92.
go back to reference Morton JJL et al (2006) The N@C60 nuclear spin qubit: bang-bang decoupling and ultrafast phase gates. Phys status solidi 243:3028–3031CrossRef Morton JJL et al (2006) The N@C60 nuclear spin qubit: bang-bang decoupling and ultrafast phase gates. Phys status solidi 243:3028–3031CrossRef
93.
go back to reference Morton JJL et al (2005) Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys Rev A 71:12332CrossRef Morton JJL et al (2005) Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance. Phys Rev A 71:12332CrossRef
94.
go back to reference Morton JJL et al (2005) High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys Rev Lett 95:200501CrossRef Morton JJL et al (2005) High fidelity single qubit operations using pulsed electron paramagnetic resonance. Phys Rev Lett 95:200501CrossRef
95.
go back to reference Simmons S, Wu H, Morton JJL (2012) Controlling and exploiting phases in multi-spin systems using electron spin resonance and nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:4794–4809CrossRef Simmons S, Wu H, Morton JJL (2012) Controlling and exploiting phases in multi-spin systems using electron spin resonance and nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:4794–4809CrossRef
96.
go back to reference Zhang J, Souza AM, Brandao FD, Suter D (2014) Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys Rev Lett 112:50502CrossRef Zhang J, Souza AM, Brandao FD, Suter D (2014) Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys Rev Lett 112:50502CrossRef
97.
go back to reference Mehring M, Scherer W, Weidinger A (2004) Pseudoentanglement of spin states in the multilevel 15N@C60 System. Phys Rev Lett 93:206603CrossRef Mehring M, Scherer W, Weidinger A (2004) Pseudoentanglement of spin states in the multilevel 15N@C60 System. Phys Rev Lett 93:206603CrossRef
98.
go back to reference Scherer W, Mehring M (2008) Entangled electron and nuclear spin states in 15N@C60: density matrix tomography. J Chem Phys 128:52305CrossRef Scherer W, Mehring M (2008) Entangled electron and nuclear spin states in 15N@C60: density matrix tomography. J Chem Phys 128:52305CrossRef
99.
go back to reference Auccaise R et al (2008) A study of the relaxation dynamics in a quadrupolar NMR system using quantum state tomography. J Magn Reson 192:17–26CrossRef Auccaise R et al (2008) A study of the relaxation dynamics in a quadrupolar NMR system using quantum state tomography. J Magn Reson 192:17–26CrossRef
100.
go back to reference Blank A, Suhovoy E, Halevy R, Shtirberg L, Harneit W (2009) ESR imaging in solid phase down to sub-micron resolution: methodology and applications. Phys Chem Chem Phys 11:6689CrossRef Blank A, Suhovoy E, Halevy R, Shtirberg L, Harneit W (2009) ESR imaging in solid phase down to sub-micron resolution: methodology and applications. Phys Chem Chem Phys 11:6689CrossRef
101.
go back to reference Blank A, Talmon Y, Shklyar M, Shtirberg L, Harneit W (2008) Direct measurement of diffusion in liquid phase by electron spin resonance. Chem Phys Lett 465:147–152CrossRef Blank A, Talmon Y, Shklyar M, Shtirberg L, Harneit W (2008) Direct measurement of diffusion in liquid phase by electron spin resonance. Chem Phys Lett 465:147–152CrossRef
102.
go back to reference Artzi Y, Twig Y, Blank A (2015) Induction-detection electron spin resonance with spin sensitivity of a few tens of spins. Appl Phys Lett 106:84104CrossRef Artzi Y, Twig Y, Blank A (2015) Induction-detection electron spin resonance with spin sensitivity of a few tens of spins. Appl Phys Lett 106:84104CrossRef
103.
go back to reference Bienfait A et al (2015) Reaching the quantum limit of sensitivity in electron spin resonance. Nat Nanotechnol 11:253–257CrossRef Bienfait A et al (2015) Reaching the quantum limit of sensitivity in electron spin resonance. Nat Nanotechnol 11:253–257CrossRef
104.
go back to reference Grose JE et al (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater 7:884–889CrossRef Grose JE et al (2008) Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater 7:884–889CrossRef
105.
go back to reference Harneit W et al (2007) Room temperature electrical detection of spin coherence in C60. Phys Rev Lett 98:216601CrossRef Harneit W et al (2007) Room temperature electrical detection of spin coherence in C60. Phys Rev Lett 98:216601CrossRef
106.
go back to reference Eckardt M, Behrends J, Münter D, Harneit W (2015) Compact electrically detected magnetic resonance setup. AIP Adv 5:47139CrossRef Eckardt M, Behrends J, Münter D, Harneit W (2015) Compact electrically detected magnetic resonance setup. AIP Adv 5:47139CrossRef
107.
go back to reference Roch N et al (2011) Cotunneling through a magnetic single-molecule transistor based on N@C60. Phys Rev B 83:81407CrossRef Roch N et al (2011) Cotunneling through a magnetic single-molecule transistor based on N@C60. Phys Rev B 83:81407CrossRef
108.
go back to reference Elzerman JM et al (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431–435CrossRef Elzerman JM et al (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431–435CrossRef
109.
go back to reference Petta JR et al (2005) Coherent Manipulation of Coupled Electron spins in semiconductor quantum dots. Science 309:2180–2184 Petta JR et al (2005) Coherent Manipulation of Coupled Electron spins in semiconductor quantum dots. Science 309:2180–2184
110.
go back to reference Feng M, Twamley J (2004) Readout scheme of the fullerene-based quantum computer by a single-electron transistor. Phys Rev A 70:30303CrossRef Feng M, Twamley J (2004) Readout scheme of the fullerene-based quantum computer by a single-electron transistor. Phys Rev A 70:30303CrossRef
111.
go back to reference McCamey DR, Van Tol J, Morley GW, Boehme C (2010) Electronic spin storage in an electrically readable nuclear spin memory with a lifetime >100 seconds. Science 330:1652–1656 McCamey DR, Van Tol J, Morley GW, Boehme C (2010) Electronic spin storage in an electrically readable nuclear spin memory with a lifetime >100 seconds. Science 330:1652–1656
112.
go back to reference McCamey DR et al (2006) Electrically detected magnetic resonance in ion-implanted Si: P nanostructures. Appl Phys Lett 89:182115CrossRef McCamey DR et al (2006) Electrically detected magnetic resonance in ion-implanted Si: P nanostructures. Appl Phys Lett 89:182115CrossRef
113.
go back to reference Eckardt M (2016) Electrically detected magnetic resonance on fullerene-based organic semiconductor devices and microcrystals. PhD thesis. Johannes Gutenberg-Universitaet Mainz, Germany Eckardt M (2016) Electrically detected magnetic resonance on fullerene-based organic semiconductor devices and microcrystals. PhD thesis. Johannes Gutenberg-Universitaet Mainz, Germany
114.
go back to reference Filidou V et al (2012) Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat Phys 8:596–600CrossRef Filidou V et al (2012) Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nat Phys 8:596–600CrossRef
115.
go back to reference Grotz B et al (2011) Sensing external spins with nitrogen-vacancy diamond. New J Phys 13:55004CrossRef Grotz B et al (2011) Sensing external spins with nitrogen-vacancy diamond. New J Phys 13:55004CrossRef
116.
go back to reference Gaebel T et al (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413CrossRef Gaebel T et al (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413CrossRef
117.
go back to reference Huebener K, Schoenfeld RS, Kniepert J, Oelmueller C, Harneit W (2008) ODMR of NV centers in nano-diamonds covered with N@C60. Phys status solidi 245:2013–2017CrossRef Huebener K, Schoenfeld RS, Kniepert J, Oelmueller C, Harneit W (2008) ODMR of NV centers in nano-diamonds covered with N@C60. Phys status solidi 245:2013–2017CrossRef
118.
go back to reference Schoenfeld RS (2011) Optical readout of single spins for quantum computing and magnetic sensing. PhD thesis. Freie Universitaet, Berlin Schoenfeld RS (2011) Optical readout of single spins for quantum computing and magnetic sensing. PhD thesis. Freie Universitaet, Berlin
119.
go back to reference Shi F et al (2010) Room-temperature implementation of the deutsch-jozsa algorithm with a single electronic spin in diamond. Phys Rev Lett 105:40504CrossRef Shi F et al (2010) Room-temperature implementation of the deutsch-jozsa algorithm with a single electronic spin in diamond. Phys Rev Lett 105:40504CrossRef
120.
go back to reference Schoenfeld RS, Harneit W (2011) Real time magnetic field sensing and imaging using a single spin in diamond. Phys Rev Lett 106:30802CrossRef Schoenfeld RS, Harneit W (2011) Real time magnetic field sensing and imaging using a single spin in diamond. Phys Rev Lett 106:30802CrossRef
121.
go back to reference Romach Y et al (2015) Spectroscopy of surface-induced noise using shallow spins in diamond. Phys Rev Lett 114:17601CrossRef Romach Y et al (2015) Spectroscopy of surface-induced noise using shallow spins in diamond. Phys Rev Lett 114:17601CrossRef
122.
go back to reference Nimmrich M et al (2010) Atomic-resolution imaging of clean and hydrogen-terminated C(100) − (2 × 1) diamond surfaces using noncontact AFM. Phys Rev B 81:201403CrossRef Nimmrich M et al (2010) Atomic-resolution imaging of clean and hydrogen-terminated C(100) − (2 × 1) diamond surfaces using noncontact AFM. Phys Rev B 81:201403CrossRef
123.
go back to reference Dyachenko O et al (2015) A diamond (100) surface with perfect phase purity. Chem Phys Lett 640:72–76CrossRef Dyachenko O et al (2015) A diamond (100) surface with perfect phase purity. Chem Phys Lett 640:72–76CrossRef
124.
go back to reference Morton JJL, Lovett BW (2011) Hybrid solid-state qubits: the powerful role of electron spins. Annu Rev Condens Matter Phys 2:189–212CrossRef Morton JJL, Lovett BW (2011) Hybrid solid-state qubits: the powerful role of electron spins. Annu Rev Condens Matter Phys 2:189–212CrossRef
Metadata
Title
Spin Quantum Computing with Endohedral Fullerenes
Author
Wolfgang Harneit
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-47049-8_14

Premium Partners