Skip to main content
Top
Published in: Rare Metals 10/2015

01-10-2015

Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant

Authors: Li Ren, Xing-En Li, Fang-Fang Wang, Yang Han

Published in: Rare Metals | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The well-distribution spindle LiFePO4 (LFP) nanoparticles as cathode of lithium secondary batteries were synthesized by a solvothermal reaction route at low temperature (180 °C) in which the ascorbic acid was used as reducing agent. In order to guarantee that the pH values of thermal systems were not affected too much and the reducibility of the system was enhanced at the same time, glucose was chosen as an auxiliary reductant in this reaction. The obtained powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and laser particle analyzer. The results show that the carbon-coated uniform spindle olivine LiFePO4/C-glucose particles (glucose as auxiliary reductant, LFP/C-G) are prepared with the size 500–600 nm and without any impurity phases. Their electrochemical properties were evaluated by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge tests. LFP/C-G has a higher conductivity and better reversible capability than carbon-coated LFP (LFP/C). The highest discharge capacity of LFP/C-G is 161.3 mAh·g−1 at 0.1C and 108.6 mAh·g−1 at 5.0C, respectively. The results imply that the neat crystal nanostructure of LFP/C-G has excellent capacity retention and cycling stability. The adding of glucose is the key factor for the well-distribution and neat crystal structure of nanoparticles, thus the electrochemical performances of materials are improved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Sun G, Jin B, Sun G, Jin E, Gu HB, Jiang Q. Characteristics of lithium iron phosphate mixed with nano-sized acetylene black for rechargeable lithium-ion batteries. J Appl Electrochem. 2011;41(1):99.CrossRef Sun G, Jin B, Sun G, Jin E, Gu HB, Jiang Q. Characteristics of lithium iron phosphate mixed with nano-sized acetylene black for rechargeable lithium-ion batteries. J Appl Electrochem. 2011;41(1):99.CrossRef
[2]
go back to reference Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc. 1997;144(5):1609.CrossRef Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc. 1997;144(5):1609.CrossRef
[3]
go back to reference Andersson AS, Thomas JO. The source of first-cycle capacity loss in LiFePO4. J Power Sources. 2001;97–98(1–2):498.CrossRef Andersson AS, Thomas JO. The source of first-cycle capacity loss in LiFePO4. J Power Sources. 2001;97–98(1–2):498.CrossRef
[4]
go back to reference Hu YQ, Doeff MM, Kostecki R, Fiñones R. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J Electrochem Soc. 2004;151(8):A1279.CrossRef Hu YQ, Doeff MM, Kostecki R, Fiñones R. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J Electrochem Soc. 2004;151(8):A1279.CrossRef
[5]
go back to reference Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid State Lett. 2002;5(3):A47.CrossRef Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem Solid State Lett. 2002;5(3):A47.CrossRef
[6]
go back to reference Huang YH, Goodenough JB. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater. 2008;23(20):7237.CrossRef Huang YH, Goodenough JB. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater. 2008;23(20):7237.CrossRef
[7]
go back to reference Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater. 2007;19(15):1963.CrossRef Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J, Maier J. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Adv Mater. 2007;19(15):1963.CrossRef
[8]
go back to reference Zhao RR, Hung IM, Li YT, Chen HY, Lin CP. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloys Compd. 2012;513(1):282.CrossRef Zhao RR, Hung IM, Li YT, Chen HY, Lin CP. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J Alloys Compd. 2012;513(1):282.CrossRef
[9]
go back to reference Lee J, Kumar P, Lee J, Moudgil BM, Singh RK. ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium-ion rechargeable batteries. J Alloys Compd. 2013;550(1):536.CrossRef Lee J, Kumar P, Lee J, Moudgil BM, Singh RK. ZnO incorporated LiFePO4 for high rate electrochemical performance in lithium-ion rechargeable batteries. J Alloys Compd. 2013;550(1):536.CrossRef
[10]
go back to reference Zhong SK, Xu YB, Li YH, Zeng HH, Li W, Wang J. Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials. Rare Met. 2012;31(5):474.CrossRef Zhong SK, Xu YB, Li YH, Zeng HH, Li W, Wang J. Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials. Rare Met. 2012;31(5):474.CrossRef
[11]
go back to reference Herle PS, Ellis B, Coombs N, Nazar LF. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3(3):147.CrossRef Herle PS, Ellis B, Coombs N, Nazar LF. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3(3):147.CrossRef
[12]
go back to reference Yang MR, Ke WH. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M = Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells. J Electrochem Soc. 2008;155(10):A729.CrossRef Yang MR, Ke WH. The doping effect on the electrochemical properties of LiFe0.95M0.05PO4 (M = Mg2+, Ni2+, Al3+, or V3+) as cathode materials for lithium-ion cells. J Electrochem Soc. 2008;155(10):A729.CrossRef
[13]
go back to reference Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc. 2001;148(3):A224.CrossRef Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc. 2001;148(3):A224.CrossRef
[14]
go back to reference Delacourt C, Poizot P, Levasseur S, Masquelier C. Size effects on carbon-free LiFePO4 powders. Electrochem Solid State Lett. 2006;9(7):A352.CrossRef Delacourt C, Poizot P, Levasseur S, Masquelier C. Size effects on carbon-free LiFePO4 powders. Electrochem Solid State Lett. 2006;9(7):A352.CrossRef
[15]
go back to reference Sides CR, Croce F, Young VY, Charles RM, Bruno S. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid State Lett. 2005;8(9):A484.CrossRef Sides CR, Croce F, Young VY, Charles RM, Bruno S. A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid State Lett. 2005;8(9):A484.CrossRef
[16]
go back to reference Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.CrossRef
[17]
go back to reference Kang HC, Jun DK, Jin B, Jin EM, Park KH, Gu HB, Kim KW. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. J Power Sources. 2008;179(1):340.CrossRef Kang HC, Jun DK, Jin B, Jin EM, Park KH, Gu HB, Kim KW. Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. J Power Sources. 2008;179(1):340.CrossRef
[18]
go back to reference Hsu KF, Tsay SY, Hwang BJ. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem. 2004;14(17):2690.CrossRef Hsu KF, Tsay SY, Hwang BJ. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem. 2004;14(17):2690.CrossRef
[19]
go back to reference Ellis B, Kan WH, Makahnouk WRM, Nazar LF. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem. 2007;17(30):3248.CrossRef Ellis B, Kan WH, Makahnouk WRM, Nazar LF. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem. 2007;17(30):3248.CrossRef
[20]
go back to reference Teng F, Santhanagopalan S, Lemmens R, Geng XB, Patel P, Meng DD. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci. 2010;12(5):952.CrossRef Teng F, Santhanagopalan S, Lemmens R, Geng XB, Patel P, Meng DD. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci. 2010;12(5):952.CrossRef
[21]
go back to reference Wang DY, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Grätzel M. High-performance nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources. 2009;189(1):624.CrossRef Wang DY, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon NH, Miners JH, Poletto L, Grätzel M. High-performance nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources. 2009;189(1):624.CrossRef
[22]
go back to reference Wang GX, Shen XP, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J Power Sources. 2009;189(1):543.CrossRef Wang GX, Shen XP, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J Power Sources. 2009;189(1):543.CrossRef
[23]
go back to reference Huanga XJ, Yana SJ, Zhaoa HY, Zhanga L, Guoa R, Chang CK, Kong XY, Han HB. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater Charact. 2010;61(7):720.CrossRef Huanga XJ, Yana SJ, Zhaoa HY, Zhanga L, Guoa R, Chang CK, Kong XY, Han HB. Electrochemical performance of LiFePO4 nanorods obtained from hydrothermal process. Mater Charact. 2010;61(7):720.CrossRef
[24]
go back to reference Chen JJ, Wang SJ, Whittingham MS. Hydrothermal synthesis of cathode materials. J Power Sources. 2007;174(2):442.CrossRef Chen JJ, Wang SJ, Whittingham MS. Hydrothermal synthesis of cathode materials. J Power Sources. 2007;174(2):442.CrossRef
[25]
go back to reference Madhav S, Monika WP. Polyol process for the synthesis of LiFePO4 rhombohedral particles. Adv Mater. 2011;22(2):284. Madhav S, Monika WP. Polyol process for the synthesis of LiFePO4 rhombohedral particles. Adv Mater. 2011;22(2):284.
[26]
go back to reference Rodrigues S, Munichandraiah N, Shukla AK. AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem. 1999;3(7–8):397.CrossRef Rodrigues S, Munichandraiah N, Shukla AK. AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery. J Solid State Electrochem. 1999;3(7–8):397.CrossRef
[27]
go back to reference Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties of Li x Ni1−y Co y O2 cathodes studied by impedance spectroscopy. Chem Mater. 2001;13(5):1642.CrossRef Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties of Li x Ni1−y Co y O2 cathodes studied by impedance spectroscopy. Chem Mater. 2001;13(5):1642.CrossRef
[28]
go back to reference Levi MD, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem. 1997;101(23):4630.CrossRef Levi MD, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. J Phys Chem. 1997;101(23):4630.CrossRef
[29]
go back to reference Pei B, Wang Q, Zhang WX, Yang ZH, Chen M. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochim Acta. 2011;56(16):5667.CrossRef Pei B, Wang Q, Zhang WX, Yang ZH, Chen M. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping. Electrochim Acta. 2011;56(16):5667.CrossRef
Metadata
Title
Spindle LiFePO4 particles as cathode of lithium-ion batteries synthesized by solvothermal method with glucose as auxiliary reductant
Authors
Li Ren
Xing-En Li
Fang-Fang Wang
Yang Han
Publication date
01-10-2015
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 10/2015
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-013-0126-x

Other articles of this Issue 10/2015

Rare Metals 10/2015 Go to the issue

Premium Partners