Skip to main content
Top
Published in: Archive of Applied Mechanics 9/2020

12-05-2020 | Original

Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints

Authors: Carmine M. Pappalardo, Antonio Lettieri, Domenico Guida

Published in: Archive of Applied Mechanics | Issue 9/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a new analytical approach suitable for the stability analysis of multibody mechanical systems is introduced in the framework of Lagrangian mechanics. The approach developed in this work is based on the direct linearization of the index-three form of the differential-algebraic dynamic equations that describe the motion of mechanical systems subjected to nonlinear constraints. One of the distinguishing features of the proposed method is that it can handle general sets of nonlinear holonomic and/or nonholonomic constraints without altering the original mathematical structure of the equations of motion. While the typical state-space dynamic description associated with multibody systems leads to the definition of a standard eigenproblem, which is impractical, if not impossible, to implement in the case of complex systems, the method developed in this paper involves a generalized state-space representation of the dynamic equations and allows for the formulation of a generalized eigenvalue problem that extends the scope of applicability of the stability analysis to complex mechanical systems. As demonstrated in this investigation employing simple numerical examples, the proposed methodology can be readily implemented in general-purpose multibody computer programs and compares favorably with several other reference computational approaches already available in the multibody literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)MathSciNetMATH Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)MathSciNetMATH
2.
go back to reference Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018) Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)
3.
go back to reference Ebrahimi, S., Eberhard, P.: Rigid-elastic modeling of meshing gear wheels in multibody systems. Multibody Syst. Dyn. 16(1), 55–71 (2006)MATH Ebrahimi, S., Eberhard, P.: Rigid-elastic modeling of meshing gear wheels in multibody systems. Multibody Syst. Dyn. 16(1), 55–71 (2006)MATH
4.
go back to reference Meli, E., Malvezzi, M., Papini, S., Pugi, L., Rinchi, M., Rindi, A.: A railway vehicle multibody model for real-time applications. Veh. Syst. Dyn. 46(12), 1083–1105 (2008) Meli, E., Malvezzi, M., Papini, S., Pugi, L., Rinchi, M., Rindi, A.: A railway vehicle multibody model for real-time applications. Veh. Syst. Dyn. 46(12), 1083–1105 (2008)
5.
go back to reference Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018) Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018)
6.
go back to reference Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017) Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)
7.
go back to reference Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017) Villecco, F., Pellegrino, A.: Entropic measure of epistemic uncertainties in multibody system models by axiomatic design. Entropy 19(7), 291 (2017)
8.
go back to reference Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107–133 (2018)MathSciNetMATH Escalona, J.L., Orzechowski, G., Mikkola, A.M.: Flexible multibody modeling of reeving systems including transverse vibrations. Multibody Syst. Dyn. 44(2), 107–133 (2018)MathSciNetMATH
9.
go back to reference Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(1), 69–84 (2016) Patel, M., Orzechowski, G., Tian, Q., Shabana, A.A.: A new multibody system approach for tire modeling using ANCF finite elements. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 230(1), 69–84 (2016)
10.
go back to reference Rahikainen, J., Mikkola, A., Sopanen, J., Gerstmayr, J.: Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody Syst. Dyn. 44(3), 293–311 (2018)MathSciNetMATH Rahikainen, J., Mikkola, A., Sopanen, J., Gerstmayr, J.: Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics. Multibody Syst. Dyn. 44(3), 293–311 (2018)MathSciNetMATH
11.
go back to reference Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)MathSciNetMATH Palomba, I., Richiedei, D., Trevisani, A.: Kinematic state estimation for rigid-link multibody systems by means of nonlinear constraint equations. Multibody Syst. Dyn. 40(1), 1–22 (2017)MathSciNetMATH
12.
go back to reference Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor and Francis, London (1992)MATH Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor and Francis, London (1992)MATH
13.
go back to reference Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006) Eberhard, P., Schiehlen, W.: Computational dynamics of multibody systems: history, formalisms, and applications. J. Comput. Nonlinear Dyn. 1(1), 3–12 (2006)
14.
go back to reference Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 109–117 (1991) Huston, R.L.: Multibody dynamics—modeling and analysis methods. Appl. Mech. Rev. 44(3), 109–117 (1991)
15.
go back to reference Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 9(05), 1750068 (2017) Lot, R., Massaro, M.: A symbolic approach to the multibody modeling of road vehicles. Int. J. Appl. Mech. 9(05), 1750068 (2017)
16.
go back to reference Maddio, P.D., Meschini, A., Sinatra, R., Cammarata, A.: An optimized form-finding method of an asymmetric large deployable reflector. Eng. Struct. 181, 27–34 (2019) Maddio, P.D., Meschini, A., Sinatra, R., Cammarata, A.: An optimized form-finding method of an asymmetric large deployable reflector. Eng. Struct. 181, 27–34 (2019)
17.
go back to reference Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59(1–2), 173–182 (2010)MathSciNetMATH Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59(1–2), 173–182 (2010)MathSciNetMATH
18.
go back to reference Vukić, Z., Kuljača, L.,Đonlagić, D., Tešnjak, S.: Nonlinear Control Systems. Marcel Dekker, New York (2003) Vukić, Z., Kuljača, L.,Đonlagić, D., Tešnjak, S.: Nonlinear Control Systems. Marcel Dekker, New York (2003)
19.
go back to reference Jain, A.: Multibody graph transformations and analysis: part I: tree topology systems. Nonlinear Dyn. 67(4), 2779–2797 (2012)MathSciNetMATH Jain, A.: Multibody graph transformations and analysis: part I: tree topology systems. Nonlinear Dyn. 67(4), 2779–2797 (2012)MathSciNetMATH
20.
go back to reference Jain, A.: Multibody graph transformations and analysis: part II: closed-chain constraint embedding. Nonlinear Dyn. 67(4), 2153–2170 (2012)MathSciNetMATH Jain, A.: Multibody graph transformations and analysis: part II: closed-chain constraint embedding. Nonlinear Dyn. 67(4), 2153–2170 (2012)MathSciNetMATH
21.
go back to reference Ripepi, M., Masarati, P.: Reduced order models using generalized eigenanalysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 225, 52–65 (2011) Ripepi, M., Masarati, P.: Reduced order models using generalized eigenanalysis. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 225, 52–65 (2011)
22.
go back to reference Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17, 157–176 (2007)MathSciNetMATH Lehner, M., Eberhard, P.: A two-step approach for model reduction in flexible multibody dynamics. Multibody Syst. Dyn. 17, 157–176 (2007)MathSciNetMATH
23.
go back to reference Koutsovasilis, P., Beitelschmidt, M.: Comparison of model reduction techniques for large mechanical systems: AA study on an elastic rod. Multibody Syst. Dyn. 20, 111–128 (2008)MathSciNetMATH Koutsovasilis, P., Beitelschmidt, M.: Comparison of model reduction techniques for large mechanical systems: AA study on an elastic rod. Multibody Syst. Dyn. 20, 111–128 (2008)MathSciNetMATH
24.
go back to reference Nikravesh, P.E., Gim, G.: Ride and stability analysis of a sports car using multibody dynamic simulation. Math. Comput. Model. 14, 953–958 (1990) Nikravesh, P.E., Gim, G.: Ride and stability analysis of a sports car using multibody dynamic simulation. Math. Comput. Model. 14, 953–958 (1990)
26.
go back to reference Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. Xuebao 23, 231–246 (2007)MathSciNetMATH Sun, M., Wang, J., Xiong, Y.: Dynamic flight stability of hovering insects. Acta Mech. Sin. Xuebao 23, 231–246 (2007)MathSciNetMATH
27.
go back to reference Bauchau, O.A., Wang, J.: Stability analysis of complex multibody systems. J. Comput. Nonlinear Dyn. 1, 71–80 (2006) Bauchau, O.A., Wang, J.: Stability analysis of complex multibody systems. J. Comput. Nonlinear Dyn. 1, 71–80 (2006)
28.
go back to reference Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A.: A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. Proc. ECCOMAS Themat. Conf. Multibody Dyn. 2013, 1083–1092 (2013) Cuadrado, J., Vilela, D., Iglesias, I., Martín, A., Peña, A.: A multibody model to assess the effect of automotive motor in-wheel configuration on vehicle stability and comfort. Proc. ECCOMAS Themat. Conf. Multibody Dyn. 2013, 1083–1092 (2013)
29.
go back to reference Escalona, J.L., Chamorro, R.: Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dyn. 53, 237–250 (2008)MathSciNetMATH Escalona, J.L., Chamorro, R.: Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dyn. 53, 237–250 (2008)MathSciNetMATH
30.
go back to reference Quaranta, G., Mantegazza, P., Masarati, P.: Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition. J. Sound Vib. 271, 1015–1038 (2004)MathSciNetMATH Quaranta, G., Mantegazza, P., Masarati, P.: Assessing the local stability of periodic motions for large multibody non-linear systems using proper orthogonal decomposition. J. Sound Vib. 271, 1015–1038 (2004)MathSciNetMATH
31.
go back to reference Masarati, P.: Direct eigenanalysis of constrained system dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 223, 335–342 (2010) Masarati, P.: Direct eigenanalysis of constrained system dynamics. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 223, 335–342 (2010)
32.
go back to reference Negrut, D., Ortiz, J.L.: A practical approach for the linearization of the constrained multibody dynamics equations. J. Comput. Nonlinear Dyn. 1, 230–239 (2006) Negrut, D., Ortiz, J.L.: A practical approach for the linearization of the constrained multibody dynamics equations. J. Comput. Nonlinear Dyn. 1, 230–239 (2006)
33.
go back to reference Ortiz, J.L., Negrut, D.: Exact linearization of multibody systems using user-defined coordinates. SAE Tech Pap. (2006) Ortiz, J.L., Negrut, D.: Exact linearization of multibody systems using user-defined coordinates. SAE Tech Pap. (2006)
34.
go back to reference Nichkawde, C., Harish, P.M., Ananthkrishnan, N.: Stability analysis of a multibody system model for coupled slosh-vehicle dynamics. J. Sound. Vib. 275, 1069–1083 (2004) Nichkawde, C., Harish, P.M., Ananthkrishnan, N.: Stability analysis of a multibody system model for coupled slosh-vehicle dynamics. J. Sound. Vib. 275, 1069–1083 (2004)
35.
go back to reference Bencsik, L., Kovács, L.L., Zelei, A.: Stabilization of internal dynamics of underactuated systems by periodic servo-constraints. Int. J. Struct. Stab. Dyn. 17, 1–14 (2017)MathSciNet Bencsik, L., Kovács, L.L., Zelei, A.: Stabilization of internal dynamics of underactuated systems by periodic servo-constraints. Int. J. Struct. Stab. Dyn. 17, 1–14 (2017)MathSciNet
36.
go back to reference Zenkov, D.V., Bloch, A.M., Marsden, J.E.: The energy-momentum method for the stability of non-holonomic systems. Dyn. Stab. Syst. 13, 123–165 (1998)MathSciNetMATH Zenkov, D.V., Bloch, A.M., Marsden, J.E.: The energy-momentum method for the stability of non-holonomic systems. Dyn. Stab. Syst. 13, 123–165 (1998)MathSciNetMATH
37.
go back to reference Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, vol. 33. American Mathematical Society, Philadelphia (2004)MATH Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, vol. 33. American Mathematical Society, Philadelphia (2004)MATH
38.
go back to reference Ruina, A.: Nonholonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42, 91–100 (1998)MathSciNetMATH Ruina, A.: Nonholonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42, 91–100 (1998)MathSciNetMATH
39.
go back to reference Pollard, B., Fedonyuk, V., Tallapragada, P.: Swimming on limit cycles with nonholonomic constraints. Nonlinear Dyn. 97, 2453–2468 (2019)MATH Pollard, B., Fedonyuk, V., Tallapragada, P.: Swimming on limit cycles with nonholonomic constraints. Nonlinear Dyn. 97, 2453–2468 (2019)MATH
40.
go back to reference Zhang, C., Li, Y., Qi, G., Sheng, A.: Distributed finite-time control for coordinated circumnavigation with multiple non-holonomic robots. Nonlinear Dyn. 98, 573–588 (2019) Zhang, C., Li, Y., Qi, G., Sheng, A.: Distributed finite-time control for coordinated circumnavigation with multiple non-holonomic robots. Nonlinear Dyn. 98, 573–588 (2019)
41.
go back to reference Pappalardo, C.M., Guida, D.: On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch. Appl. Mech. 89(4), 669–698 (2019) Pappalardo, C.M., Guida, D.: On the dynamics and control of underactuated nonholonomic mechanical systems and applications to mobile robots. Arch. Appl. Mech. 89(4), 669–698 (2019)
42.
go back to reference Pappalardo, C.M., Guida, D.: Forward and inverse dynamics of a unicycle-like mobile robot. Machines 7(1), 5 (2019) Pappalardo, C.M., Guida, D.: Forward and inverse dynamics of a unicycle-like mobile robot. Machines 7(1), 5 (2019)
43.
go back to reference Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008) Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)
44.
go back to reference Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008) Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)
45.
go back to reference Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 1, CEA Casa Editrice Ambrosiana (2009) Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 1, CEA Casa Editrice Ambrosiana (2009)
46.
go back to reference Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 2, CEA Casa Editrice Ambrosiana (2009) Cheli, F., Pennestrí, E.: Cinematica e Dinamica dei Sistemi Multibody, Volume 2, CEA Casa Editrice Ambrosiana (2009)
47.
go back to reference Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003) Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2003)
48.
go back to reference Meirovitch, L.: Methods of Analytical Dynamics, Courier Corporation (2010) Meirovitch, L.: Methods of Analytical Dynamics, Courier Corporation (2010)
49.
go back to reference Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989) Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)
50.
51.
go back to reference Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988) Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall, Englewood Cliffs (1988)
52.
go back to reference Flannery, M.R.: D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032705 (2011)MathSciNetMATH Flannery, M.R.: D’Alembert–Lagrange analytical dynamics for nonholonomic systems. J. Math. Phys. 52(3), 032705 (2011)MathSciNetMATH
53.
go back to reference Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015)MATH Flores, P.: Concepts and Formulations for Spatial Multibody Dynamics. Springer, Berlin (2015)MATH
54.
go back to reference Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)MATH Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013)MATH
55.
go back to reference Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2018) Pappalardo, C.M., Guida, D.: On the Lagrange multipliers of the intrinsic constraint equations of rigid multibody mechanical systems. Arch. Appl. Mech. 88(3), 419–451 (2018)
56.
go back to reference Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017) Pappalardo, C.M., Guida, D.: On the use of two-dimensional Euler parameters for the dynamic simulation of planar rigid multibody systems. Arch. Appl. Mech. 87(10), 1647–1665 (2017)
57.
go back to reference Lanczos, C.: The Variational Principles of Mechanics, Courier Corporation (2012) Lanczos, C.: The Variational Principles of Mechanics, Courier Corporation (2012)
58.
go back to reference Shabana, A.A., Sany, J.R.: An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear Dyn. 24(2), 183–204 (2001)MATH Shabana, A.A., Sany, J.R.: An augmented formulation for mechanical systems with non-generalized coordinates: application to rigid body contact problems. Nonlinear Dyn. 24(2), 183–204 (2001)MATH
59.
go back to reference Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press, Boca Raton (2007)MATH Nikravesh, P.E.: Planar Multibody Dynamics: Formulation, Programming and Applications. CRC Press, Boca Raton (2007)MATH
60.
go back to reference Rabier, P.J., Rheinboldt, W.C.: Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)MATH Rabier, P.J., Rheinboldt, W.C.: Nonholonomic Motion of Rigid Mechanical Systems from a DAE Viewpoint. SIAM, Philadelphia (2000)MATH
61.
go back to reference Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)MathSciNetMATH Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997)MathSciNetMATH
62.
go back to reference Mariti, L., Belfiore, N.P., Pennestrí, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)MathSciNetMATH Mariti, L., Belfiore, N.P., Pennestrí, E., Valentini, P.P.: Comparison of solution strategies for multibody dynamics equations. Int. J. Numer. Methods Eng. 88(7), 637–656 (2011)MathSciNetMATH
63.
go back to reference Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015) Wehage, K.T., Wehage, R.A., Ravani, B.: Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mech. Mach. Theory 92, 464–483 (2015)
64.
go back to reference Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATH Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetMATH
65.
go back to reference Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetMATH Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)MathSciNetMATH
66.
go back to reference Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46(5), 943–958 (2011)MathSciNetMATH Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46(5), 943–958 (2011)MathSciNetMATH
67.
go back to reference Cheli, F., Diana, G.: Advanced Dynamics of Mechanical Systems. Springer, Berlin (2015)MATH Cheli, F., Diana, G.: Advanced Dynamics of Mechanical Systems. Springer, Berlin (2015)MATH
68.
go back to reference Shabana, A.A.: Computational Continuum Mechanics. Wiley, New York (2018)MATH Shabana, A.A.: Computational Continuum Mechanics. Wiley, New York (2018)MATH
69.
go back to reference Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)MATH Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007)MATH
70.
go back to reference Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000)MATH Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000)MATH
71.
go back to reference Pappalardo, C.M., Guida, D.: A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Arch. Appl. Mech. 88(12), 2153–2177 (2018) Pappalardo, C.M., Guida, D.: A comparative study of the principal methods for the analytical formulation and the numerical solution of the equations of motion of rigid multibody systems. Arch. Appl. Mech. 88(12), 2153–2177 (2018)
72.
go back to reference Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)MATH Shabana, A.A.: Computational Dynamics. Wiley, New York (2009)MATH
73.
go back to reference Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (2012) Garcia De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, Berlin (2012)
74.
go back to reference Pennestrí, E., Vita, L.: Strategies for the numerical integration of DAE systems in multibody dynamics. Comput. Appl. Eng. Educ. 12(2), 106–116 (2004) Pennestrí, E., Vita, L.: Strategies for the numerical integration of DAE systems in multibody dynamics. Comput. Appl. Eng. Educ. 12(2), 106–116 (2004)
75.
go back to reference Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)MATH Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)MATH
76.
go back to reference Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetMATH Udwadia, F.E., Wanichanon, T.: On general nonlinear constrained mechanical systems. Numer. Algebra Control Optim. 3(3), 425–443 (2013)MathSciNetMATH
77.
go back to reference Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 228(3), 307–313 (2014) Shabana, A.A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 228(3), 307–313 (2014)
78.
go back to reference Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 439(1906), 407–410 (1992) Udwadia, F.E., Kalaba, R.E.: A new perspective on constrained motion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 439(1906), 407–410 (1992)
79.
go back to reference Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37(6), 1079–1090 (2002)MathSciNetMATH Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Non-linear Mech. 37(6), 1079–1090 (2002)MathSciNetMATH
80.
go back to reference Shabana, A.A.: Vibration of Discrete and Continuous Systems, 3rd edn. Springer, New York (2019)MATH Shabana, A.A.: Vibration of Discrete and Continuous Systems, 3rd edn. Springer, New York (2019)MATH
81.
go back to reference Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, New York (2010) Meirovitch, L.: Fundamentals of Vibrations. Waveland Press, New York (2010)
82.
go back to reference Amirouche, F.: Fundamentals of Multibody Dynamics: Theory and Applications. Springer, Berlin (2007)MATH Amirouche, F.: Fundamentals of Multibody Dynamics: Theory and Applications. Springer, Berlin (2007)MATH
83.
go back to reference Hogben, L.: Handbook of Linear Algebra. Chapman and Hall/CRC, London (2013)MATH Hogben, L.: Handbook of Linear Algebra. Chapman and Hall/CRC, London (2013)MATH
84.
go back to reference Golub, G.H., Van Der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123(1–2), 35–65 (2000)MathSciNetMATH Golub, G.H., Van Der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123(1–2), 35–65 (2000)MathSciNetMATH
85.
86.
go back to reference Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the MATLAB ODE suite. Comput. Math. Appl. 40(4–5), 491–512 (2000)MathSciNetMATH Ashino, R., Nagase, M., Vaillancourt, R.: Behind and beyond the MATLAB ODE suite. Comput. Math. Appl. 40(4–5), 491–512 (2000)MathSciNetMATH
87.
go back to reference Pappalardo, C.M., De Simone, M.C., Guida, D.: Multibody modeling and nonlinear control of the pantograph/catenary system. Arch. Appl. Mech. 89(8), 1589–1626 (2019) Pappalardo, C.M., De Simone, M.C., Guida, D.: Multibody modeling and nonlinear control of the pantograph/catenary system. Arch. Appl. Mech. 89(8), 1589–1626 (2019)
88.
go back to reference Guida, R., De Simone, M.C., Dasic, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. IOP Conf. Ser. Mater. Sci. Eng. 568(1), 012115 (2019) Guida, R., De Simone, M.C., Dasic, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. IOP Conf. Ser. Mater. Sci. Eng. 568(1), 012115 (2019)
89.
go back to reference Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019) Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)
90.
go back to reference Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. Lect. Notes Netw. Syst. 76, 59–72 (2019) Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. Lect. Notes Netw. Syst. 76, 59–72 (2019)
91.
go back to reference De Simone, M., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018) De Simone, M., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)
92.
go back to reference De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018) De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018)
93.
go back to reference De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D Mech. Eng. 80(1), 141–154 (2018) De Simone, M.C., Guida, D.: Identification and control of a unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D Mech. Eng. 80(1), 141–154 (2018)
94.
go back to reference De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018) De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)
95.
go back to reference De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018) De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)
Metadata
Title
Stability analysis of rigid multibody mechanical systems with holonomic and nonholonomic constraints
Authors
Carmine M. Pappalardo
Antonio Lettieri
Domenico Guida
Publication date
12-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 9/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-020-01706-2

Other articles of this Issue 9/2020

Archive of Applied Mechanics 9/2020 Go to the issue

Premium Partners