Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2014

01-02-2014

Stability of TaRhx as a potential diffusion barrier for Cu metallization: capacitance–voltage tests after bias temperature stress

Authors: Neda Dalili, Douglas G. Ivey

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Amorphous TaRhx was integrated in metal oxide semiconductor (MOS) capacitors with Cu gate metallization (Al/Si/25 nm SiO2/10 nm TaRhx/Cu). The stability of TaRhx diffusion barriers was investigated under bias temperature stress testing using capacitance–voltage (CV) measurements. The stability of these capacitors was compared with similar capacitors with TaNx as the diffusion barrier layer or with capacitors with no diffusion barrier. The electrical measurements were compared with compositional information obtained by backside secondary ion mass spectroscopy (SIMS) and transmission electron microscopy (TEM). Comparison of CV measurements on capacitors with TaRhx/Cu and TaRhx/Al gate metallizations revealed that both mobile alkali ions and Cu+ contribute to the flatband voltage shift of the MOS capacitors. CV measurements of capacitors with various barriers showed that the mobile ion concentration (Cu+) in the capacitors with TaRhx diffusion barriers is reduced to 32 % of the value for capacitors with no diffusion barrier. In contrast, capacitors with TaNx barriers showed the lowest mobile ion concentration among all the barrier types. Based on flatband voltage shift values, TaNx barriers outperform TaRhx barriers. However, if the percentage of deformed CV curves is used as the reliability criterion, both barriers perform quite similarly. Compositional analysis data suggests that the concentrations of the diffused species are below the detection limits of SIMS and TEM. This work demonstrated the importance of employing electrical reliability tests for evaluation of potential diffusion barrier materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.A. Istratov, C. Flink, E.R. Weber, Phys. Status Solidi. B222, 261–277 (2000)CrossRef A.A. Istratov, C. Flink, E.R. Weber, Phys. Status Solidi. B222, 261–277 (2000)CrossRef
2.
3.
go back to reference A.G. Milnes, Deep Impurities in Semiconductors (Wiley, USA, 1973) A.G. Milnes, Deep Impurities in Semiconductors (Wiley, USA, 1973)
4.
go back to reference J.D. McBrayer, R.M. Swanson, T.W. Sigmon, J. Electrochem. Soc. 133, 1242–1246 (1986)CrossRef J.D. McBrayer, R.M. Swanson, T.W. Sigmon, J. Electrochem. Soc. 133, 1242–1246 (1986)CrossRef
5.
go back to reference G. Raghavan, C. Chiang, P.B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, M. Bohr, D.B. Fraser, Thin Solid Films 262, 168–176 (1995)CrossRef G. Raghavan, C. Chiang, P.B. Anders, S.-M. Tzeng, R. Villasol, G. Bai, M. Bohr, D.B. Fraser, Thin Solid Films 262, 168–176 (1995)CrossRef
6.
go back to reference A.E. Kaloyeros, E.T. Eisenbraun, K. Dunn, O. van der Straten, Chem. Eng. Commun. 198, 1453–1481 (2011)CrossRef A.E. Kaloyeros, E.T. Eisenbraun, K. Dunn, O. van der Straten, Chem. Eng. Commun. 198, 1453–1481 (2011)CrossRef
7.
go back to reference International Technology Roadmap for Semiconductors, 2007 International Technology Roadmap for Semiconductors, 2007
9.
go back to reference Y. Marumo, H. Sato, M. Jomen, US Patent 2005/0164499 A1 Y. Marumo, H. Sato, M. Jomen, US Patent 2005/0164499 A1
11.
go back to reference A. Kohn, M. Eizenberg, Y. Shacham-Diamand, J. Appl. Phys. 94, 3015–3024 (2003)CrossRef A. Kohn, M. Eizenberg, Y. Shacham-Diamand, J. Appl. Phys. 94, 3015–3024 (2003)CrossRef
12.
go back to reference S.-K. Rha, S.-Y. Lee, W.-J. Lee, Y.-S. Hwang, C.-O. Park, D.-W. Kim, Y.-S. Lee, C.-N. Whang, J. Vac. Sci. Technol. B 16, 2019–2025 (1998)CrossRef S.-K. Rha, S.-Y. Lee, W.-J. Lee, Y.-S. Hwang, C.-O. Park, D.-W. Kim, Y.-S. Lee, C.-N. Whang, J. Vac. Sci. Technol. B 16, 2019–2025 (1998)CrossRef
13.
go back to reference Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, J. Electrochem. Soc. 140, 2427–2432 (1993)CrossRef Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, W.G. Oldham, J. Electrochem. Soc. 140, 2427–2432 (1993)CrossRef
14.
15.
go back to reference H. Kizil, G. Kim, C. Steinbrüchel, B. Zhao, J. Electron. Mater. 30, 345–348 (2001)CrossRef H. Kizil, G. Kim, C. Steinbrüchel, B. Zhao, J. Electron. Mater. 30, 345–348 (2001)CrossRef
16.
go back to reference H. Wojcik, U. Merkel, A. Jahn, K. Richter, M. Junige, C. Klein, J. Gluch, M. Albert, F. Munnik, C. Wenzel, J.W. Bartha, Microelectron. Eng. 88, 641–645 (2011)CrossRef H. Wojcik, U. Merkel, A. Jahn, K. Richter, M. Junige, C. Klein, J. Gluch, M. Albert, F. Munnik, C. Wenzel, J.W. Bartha, Microelectron. Eng. 88, 641–645 (2011)CrossRef
17.
go back to reference K.-S. Kim, Y.-C. Joo, K.-B. Kim, J.-Y. Kwon, J. Appl. Phys. 100, 063517 (2006)CrossRef K.-S. Kim, Y.-C. Joo, K.-B. Kim, J.-Y. Kwon, J. Appl. Phys. 100, 063517 (2006)CrossRef
18.
go back to reference P. Shewmon, Diffusion in Solids (The Minerals Metals and Materials Society, USA, 1989) P. Shewmon, Diffusion in Solids (The Minerals Metals and Materials Society, USA, 1989)
19.
go back to reference S.M. Sze, M.K. Lee, Semiconductor Devices: Physics and Technology (Wiley, USA, 2012) S.M. Sze, M.K. Lee, Semiconductor Devices: Physics and Technology (Wiley, USA, 2012)
20.
21.
go back to reference F. Braud, J. Torres, J. Palleau, J.L. Mermet, M.J. Mouche, Appl. Surf. Sci. 91, 251–256 (1995)CrossRef F. Braud, J. Torres, J. Palleau, J.L. Mermet, M.J. Mouche, Appl. Surf. Sci. 91, 251–256 (1995)CrossRef
22.
go back to reference A.L.S. Loke, C. Ryu, C.P. Yue, J.S.H. Cho, S.S. Wong, IEEE Electron. Device Lett. 17, 549–551 (1996)CrossRef A.L.S. Loke, C. Ryu, C.P. Yue, J.S.H. Cho, S.S. Wong, IEEE Electron. Device Lett. 17, 549–551 (1996)CrossRef
23.
go back to reference A. Kohn, E. Lipp, M. Eizenberg, Y. Shacham-Diamand, Appl. Phys. Lett. 85, 627–629 (2004)CrossRef A. Kohn, E. Lipp, M. Eizenberg, Y. Shacham-Diamand, Appl. Phys. Lett. 85, 627–629 (2004)CrossRef
24.
go back to reference A. Nandan, S.P. Murarka, A. Pant, C. Shepard, W.A. Lanford, Advanced Metallization and Processing for Semiconductor Devices and Circuits: Materials Research Society Proceedings (MRS, USA, 1992), 260, 929–934 A. Nandan, S.P. Murarka, A. Pant, C. Shepard, W.A. Lanford, Advanced Metallization and Processing for Semiconductor Devices and Circuits: Materials Research Society Proceedings (MRS, USA, 1992), 260, 929–934
26.
go back to reference Annual Book of ASTM Standards, Standard Test Methods for Characterization of Metal-Oxide-Silicon (MOS) Structures by Capacitance–Voltage Measurements (ASTM, USA, 1992) Annual Book of ASTM Standards, Standard Test Methods for Characterization of Metal-Oxide-Silicon (MOS) Structures by Capacitance–Voltage Measurements (ASTM, USA, 1992)
27.
go back to reference P. Bai, G.-R. Yang, L. You, T.-M. Lu, D.B. Knorr, J. Mater. Res. 5, 989–997 (1990)CrossRef P. Bai, G.-R. Yang, L. You, T.-M. Lu, D.B. Knorr, J. Mater. Res. 5, 989–997 (1990)CrossRef
28.
go back to reference D. Briggs, J.C. Riviere, Practical Surface Analysis (Wiley, UK, 1983), pp. 85–141 D. Briggs, J.C. Riviere, Practical Surface Analysis (Wiley, UK, 1983), pp. 85–141
29.
go back to reference H. Wendt, H. Cerva, V. Lehmann, W. Pamler, J. Appl. Phys. 65, 2402–2405 (1989)CrossRef H. Wendt, H. Cerva, V. Lehmann, W. Pamler, J. Appl. Phys. 65, 2402–2405 (1989)CrossRef
30.
go back to reference J.D. McBrayer, R.M. Swanson, T.W. Sigmon, J. Bravman, Appl. Phys. Lett. 43, 653–654 (1983)CrossRef J.D. McBrayer, R.M. Swanson, T.W. Sigmon, J. Bravman, Appl. Phys. Lett. 43, 653–654 (1983)CrossRef
Metadata
Title
Stability of TaRhx as a potential diffusion barrier for Cu metallization: capacitance–voltage tests after bias temperature stress
Authors
Neda Dalili
Douglas G. Ivey
Publication date
01-02-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-013-1662-8

Other articles of this Issue 2/2014

Journal of Materials Science: Materials in Electronics 2/2014 Go to the issue