Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

State-of-the-Art Computational Methods for Finite Deformation Contact Modeling of Solids and Structures

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this contribution, we review mortar finite element methods (FEM), which are nowadays the most well-established computational technique for contact modeling of solids and structures in the context of finite deformations and frictional sliding. Based on some concepts of nonlinear continuum mechanics, the mortar approach is first presented for the more accessible case of mesh tying (also referred to as tied contact). Mortar methods for unilateral contact then follow in a rather straightforward manner, despite the fact that several complexities, such as inequality constraints, are added to the problem formulation. A special focus is set on practical aspects of the implementation of mortar methods within a fully nonlinear, 3D finite element environment. Specifically, the choice of suitable discrete Lagrange multiplier bases, aspects of high performance computing (HPC), numerical integration procedures and new discretization techniques such as isogeometric analysis (IGA) using NURBS are discussed. Eventually, the great potential of mortar methods in the more general field of computational interface mechanics is exemplified through applications such as wear modeling and coupled thermo-mechanical interfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference C. Agelet De Saracibar. Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Archives of Computational Methods in Engineering, 5(3):243–301, 1998.MathSciNetCrossRef C. Agelet De Saracibar. Numerical analysis of coupled thermomechanical frictional contact problems. Computational model and applications. Archives of Computational Methods in Engineering, 5(3):243–301, 1998.MathSciNetCrossRef
go back to reference P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3):353–375, 1991.MathSciNetMATHCrossRef P. Alart and A. Curnier. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering, 92(3):353–375, 1991.MathSciNetMATHCrossRef
go back to reference A. Apostolatos, R.t Schmidt, R. Wüchner, and K.-U. Bletzinger. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(7):473–504, 2014.MathSciNetCrossRef A. Apostolatos, R.t Schmidt, R. Wüchner, and K.-U. Bletzinger. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(7):473–504, 2014.MathSciNetCrossRef
go back to reference J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981–988, 1953.CrossRef J. F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24(8):981–988, 1953.CrossRef
go back to reference I. Argatov. Asymptotic modeling of reciprocating sliding wear with application to local interwire contact. Wear, 271(78):1147–1155, 2011.CrossRef I. Argatov. Asymptotic modeling of reciprocating sliding wear with application to local interwire contact. Wear, 271(78):1147–1155, 2011.CrossRef
go back to reference I. Argatov and W. Tato. Asymptotic modeling of reciprocating sliding wear comparison with finite-element simulations. European Journal of Mechanics - A/Solids, 34:1–11, 2012.MathSciNetMATHCrossRef I. Argatov and W. Tato. Asymptotic modeling of reciprocating sliding wear comparison with finite-element simulations. European Journal of Mechanics - A/Solids, 34:1–11, 2012.MathSciNetMATHCrossRef
go back to reference K.-J. Bathe. Finite element procedures. Prentice Hall, 1996. K.-J. Bathe. Finite element procedures. Prentice Hall, 1996.
go back to reference K.-J. Bathe and A. Chaudhary. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21(1):65–88, 1985.MATHCrossRef K.-J. Bathe and A. Chaudhary. A solution method for planar and axisymmetric contact problems. International Journal for Numerical Methods in Engineering, 21(1):65–88, 1985.MATHCrossRef
go back to reference T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. Wiley, 2000. T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements for continua and structures. Wiley, 2000.
go back to reference F. Ben Belgacem, P. Hild, and P. Laborde. The mortar finite element method for contact problems. Mathematical and Computer Modelling, 28(4-8):263–271, 1998.MathSciNetMATHCrossRef F. Ben Belgacem, P. Hild, and P. Laborde. The mortar finite element method for contact problems. Mathematical and Computer Modelling, 28(4-8):263–271, 1998.MathSciNetMATHCrossRef
go back to reference H. Ben Dhia and M. Torkhani. Modeling and computation of fretting wear of structures under sharp contact. International Journal for Numerical Methods in Engineering, 85(1):61–83, 2011.CrossRef H. Ben Dhia and M. Torkhani. Modeling and computation of fretting wear of structures under sharp contact. International Journal for Numerical Methods in Engineering, 85(1):61–83, 2011.CrossRef
go back to reference D. J. Benson and J. O. Hallquist. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141–163, 1990.MathSciNetMATHCrossRef D. J. Benson and J. O. Hallquist. A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering, 78(2):141–163, 1990.MathSciNetMATHCrossRef
go back to reference C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezis and J.L. Lions, editors, Nonlinear partial differential equations and their applications, pages 13–51. Pitman/Wiley: London/New York, 1994. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain decomposition: the mortar element method. In H. Brezis and J.L. Lions, editors, Nonlinear partial differential equations and their applications, pages 13–51. Pitman/Wiley: London/New York, 1994.
go back to reference J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997. J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, 1997.
go back to reference E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. Isogeometric mortar methods. Computer Methods in Applied Mechanics and Engineering, 284:292–319, 2015.MathSciNetMATHCrossRef E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich. Isogeometric mortar methods. Computer Methods in Applied Mechanics and Engineering, 284:292–319, 2015.MathSciNetMATHCrossRef
go back to reference S. Brunssen, F. Schmid, M. Schäfer, and B. I. Wohlmuth. A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid. International Journal for Numerical Methods in Engineering, 69(3):524–543, 2007.MathSciNetMATHCrossRef S. Brunssen, F. Schmid, M. Schäfer, and B. I. Wohlmuth. A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid. International Journal for Numerical Methods in Engineering, 69(3):524–543, 2007.MathSciNetMATHCrossRef
go back to reference M. Canajija and J. Brnić. Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. International Journal of Plasticity, 20(10):1851–1874, 2004.MATHCrossRef M. Canajija and J. Brnić. Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. International Journal of Plasticity, 20(10):1851–1874, 2004.MATHCrossRef
go back to reference C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in contact. SIAM Journal on Scientific Computing, 20(5):1605–1626, 1999.MathSciNetMATHCrossRef C. Carstensen, O. Scherf, and P. Wriggers. Adaptive finite elements for elastic bodies in contact. SIAM Journal on Scientific Computing, 20(5):1605–1626, 1999.MathSciNetMATHCrossRef
go back to reference F. J. Cavalieri and A. Cardona. Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. International Journal for Numerical Methods in Engineering, 96:467–486, 2013.MathSciNetMATHCrossRef F. J. Cavalieri and A. Cardona. Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. International Journal for Numerical Methods in Engineering, 96:467–486, 2013.MathSciNetMATHCrossRef
go back to reference P. W. Christensen. A semi-smooth Newton method for elasto-plastic contact problems. International Journal of Solids and Structures, 39(8):2323–2341, 2002.MATHCrossRef P. W. Christensen. A semi-smooth Newton method for elasto-plastic contact problems. International Journal of Solids and Structures, 39(8):2323–2341, 2002.MATHCrossRef
go back to reference P. W. Christensen, A. Klarbring, J. S. Pang, and N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering, 42(1):145–173, 1998.MathSciNetMATHCrossRef P. W. Christensen, A. Klarbring, J. S. Pang, and N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. International Journal for Numerical Methods in Engineering, 42(1):145–173, 1998.MathSciNetMATHCrossRef
go back to reference J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetMATHCrossRef J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha \) method. Journal of Applied Mechanics, 60:371–375, 1993.MathSciNetMATHCrossRef
go back to reference T. Cichosz and M. Bischoff. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1317–1332, 2011.MathSciNetMATHCrossRef T. Cichosz and M. Bischoff. Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 200(9-12):1317–1332, 2011.MathSciNetMATHCrossRef
go back to reference J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and FEA. Wiley, 2009. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis: toward integration of CAD and FEA. Wiley, 2009.
go back to reference L. De Lorenzis, I. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87(13):1278–1300, 2011.MathSciNetMATH L. De Lorenzis, I. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87(13):1278–1300, 2011.MathSciNetMATH
go back to reference L De Lorenzis, P Wriggers, and G Zavarise. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics, 49(1):1–20, 2012.MathSciNetMATHCrossRef L De Lorenzis, P Wriggers, and G Zavarise. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics, 49(1):1–20, 2012.MathSciNetMATHCrossRef
go back to reference L. De Lorenzis, P. Wriggers, and T. J. R. Hughes. Isogeometric contact: a review. GAMM-Mitteilungen, 37(1):85–123, 2014.MathSciNetMATHCrossRef L. De Lorenzis, P. Wriggers, and T. J. R. Hughes. Isogeometric contact: a review. GAMM-Mitteilungen, 37(1):85–123, 2014.MathSciNetMATHCrossRef
go back to reference L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali. Isogeometric collocation: Neumann boundary conditions and contact. Computer Methods in Applied Mechanics and Engineering, 284:21–54, 2015.MathSciNetCrossRef L. De Lorenzis, J. A. Evans, T. J. R. Hughes, and A. Reali. Isogeometric collocation: Neumann boundary conditions and contact. Computer Methods in Applied Mechanics and Engineering, 284:21–54, 2015.MathSciNetCrossRef
go back to reference E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen. Design of simple low order finite elements for large strain analysis of nearly incompressible solids. International Journal of Solids and Structures, 33(20-22):3277–3296, 1996.MathSciNetMATHCrossRef E. A. de Souza Neto, D. Perić, M. Dutko, and D. R. J. Owen. Design of simple low order finite elements for large strain analysis of nearly incompressible solids. International Journal of Solids and Structures, 33(20-22):3277–3296, 1996.MathSciNetMATHCrossRef
go back to reference T. Dickopf and R. Krause. Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach using constrained minimization. International Journal for Numerical Methods in Engineering, 77(13):1834–1862, 2009.MathSciNetMATHCrossRef T. Dickopf and R. Krause. Efficient simulation of multi-body contact problems on complex geometries: A flexible decomposition approach using constrained minimization. International Journal for Numerical Methods in Engineering, 77(13):1834–1862, 2009.MathSciNetMATHCrossRef
go back to reference R. Dimitri. Isogeometric treatment of large deformation contact and debonding problems with t-splines: a review. Curved and Layered Structures, 2(1), 2015. R. Dimitri. Isogeometric treatment of large deformation contact and debonding problems with t-splines: a review. Curved and Layered Structures, 2(1), 2015.
go back to reference R. Dimitri, L. De Lorenzis, M. A. Scott, P. Wriggers, R. L. Taylor, and G. Zavarise. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and eEgineering, 269:394–414, 2014.MathSciNetMATHCrossRef R. Dimitri, L. De Lorenzis, M. A. Scott, P. Wriggers, R. L. Taylor, and G. Zavarise. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics and eEgineering, 269:394–414, 2014.MathSciNetMATHCrossRef
go back to reference M. Dittmann, M. Franke, I. Temizer, and C. Hesch. Isogeometric analysis and thermomechanical mortar contact problems. Computer Methods in Applied Mechanics and Engineering, 274:192–212, 2014.MathSciNetMATHCrossRef M. Dittmann, M. Franke, I. Temizer, and C. Hesch. Isogeometric analysis and thermomechanical mortar contact problems. Computer Methods in Applied Mechanics and Engineering, 274:192–212, 2014.MathSciNetMATHCrossRef
go back to reference W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method–an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 103(3):205–234, 2015.MathSciNetMATHCrossRef W. Dornisch, G. Vitucci, and S. Klinkel. The weak substitution method–an application of the mortar method for patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 103(3):205–234, 2015.MathSciNetMATHCrossRef
go back to reference H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. Journal of Computational Physics, 227(3):1790–1808, 2008.MathSciNetMATHCrossRef H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier–Stokes equations. Journal of Computational Physics, 227(3):1790–1808, 2008.MathSciNetMATHCrossRef
go back to reference J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. N-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198(21):1726–1741, 2009.MathSciNetMATHCrossRef J. A. Evans, Y. Bazilevs, I. Babuška, and T. J. R. Hughes. N-widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198(21):1726–1741, 2009.MathSciNetMATHCrossRef
go back to reference P. Farah, A. Popp, and W. A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55:209–228, 2015.MathSciNetMATHCrossRef P. Farah, A. Popp, and W. A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55:209–228, 2015.MathSciNetMATHCrossRef
go back to reference P. Farah, M. Gitterle, W. A. Wall, and A. Popp. Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Engineering Materials, 681:1–18, 2016.CrossRef P. Farah, M. Gitterle, W. A. Wall, and A. Popp. Computational wear and contact modeling for fretting analysis with isogeometric dual mortar methods. Key Engineering Materials, 681:1–18, 2016.CrossRef
go back to reference P. Farah, W. A. Wall, and A. Popp. An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods in Engineering, 111:325–353, 2017.MathSciNetCrossRef P. Farah, W. A. Wall, and A. Popp. An implicit finite wear contact formulation based on dual mortar methods. International Journal for Numerical Methods in Engineering, 111:325–353, 2017.MathSciNetCrossRef
go back to reference K. A. Fischer and P. Wriggers. Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36(3):226–244, 2005.MATHCrossRef K. A. Fischer and P. Wriggers. Frictionless 2D contact formulations for finite deformations based on the mortar method. Computational Mechanics, 36(3):226–244, 2005.MATHCrossRef
go back to reference K. A. Fischer and P. Wriggers. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Computer Methods in Applied Mechanics and Engineering, 195(37-40):5020–5036, 2006.MathSciNetMATHCrossRef K. A. Fischer and P. Wriggers. Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Computer Methods in Applied Mechanics and Engineering, 195(37-40):5020–5036, 2006.MathSciNetMATHCrossRef
go back to reference B. Flemisch and B. I. Wohlmuth. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Computer Methods in Applied Mechanics and Engineering, 196(8):1589–1602, 2007.MathSciNetMATHCrossRef B. Flemisch and B. I. Wohlmuth. Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D. Computer Methods in Applied Mechanics and Engineering, 196(8):1589–1602, 2007.MathSciNetMATHCrossRef
go back to reference J. Foley. Computer graphics: Principles and practice. Addison-Wesley, 1997. J. Foley. Computer graphics: Principles and practice. Addison-Wesley, 1997.
go back to reference A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9(4):913–924, 1975.CrossRef A. Francavilla and O. C. Zienkiewicz. A note on numerical computation of elastic contact problems. International Journal for Numerical Methods in Engineering, 9(4):913–924, 1975.CrossRef
go back to reference M. W. Gee. Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik. PhD thesis, Universität Stuttgart, 2004. M. W. Gee. Effiziente Lösungsstrategien in der nichtlinearen Schalenmechanik. PhD thesis, Universität Stuttgart, 2004.
go back to reference M. W. Gee, C. T. Kelley, and R. B. Lehoucq. Pseudo-transient continuation for nonlinear transient elasticity. International Journal for Numerical Methods in Engineering, 78(10):1209–1219, 2009.MATHCrossRef M. W. Gee, C. T. Kelley, and R. B. Lehoucq. Pseudo-transient continuation for nonlinear transient elasticity. International Journal for Numerical Methods in Engineering, 78(10):1209–1219, 2009.MATHCrossRef
go back to reference M. Gitterle. A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. PhD thesis, Technische Universität München, 2012. M. Gitterle. A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. PhD thesis, Technische Universität München, 2012.
go back to reference M. Gitterle, A. Popp, M. W. Gee, and W. A. Wall. Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 84(5):543–571, 2010.MathSciNetMATH M. Gitterle, A. Popp, M. W. Gee, and W. A. Wall. Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. International Journal for Numerical Methods in Engineering, 84(5):543–571, 2010.MathSciNetMATH
go back to reference D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, and A.-V. Vuong. Isogeometric simulation of turbine blades for aircraft engines. Computer Aided Geometric Design, 29(7):519–531, 2012.MathSciNetMATHCrossRef D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, and A.-V. Vuong. Isogeometric simulation of turbine blades for aircraft engines. Computer Aided Geometric Design, 29(7):519–531, 2012.MathSciNetMATHCrossRef
go back to reference M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 1981. M. E. Gurtin. An introduction to continuum mechanics. Academic Press, 1981.
go back to reference C. Hager. Robust numerical algorithms for dynamic frictional contact problems with different time and space scales. PhD thesis, Universität Stuttgart, 2010. C. Hager. Robust numerical algorithms for dynamic frictional contact problems with different time and space scales. PhD thesis, Universität Stuttgart, 2010.
go back to reference C. Hager and B. I. Wohlmuth. Nonlinear complementarity functions for plasticity problems with frictional contact. Computer Methods in Applied Mechanics and Engineering, 198(41-44):3411–3427, 2009.MathSciNetMATHCrossRef C. Hager and B. I. Wohlmuth. Nonlinear complementarity functions for plasticity problems with frictional contact. Computer Methods in Applied Mechanics and Engineering, 198(41-44):3411–3427, 2009.MathSciNetMATHCrossRef
go back to reference C. Hager, S. Hüeber, and B. I. Wohlmuth. A stable energy-conserving approach for frictional contact problems based on quadrature formulas. International Journal for Numerical Methods in Engineering, 73(2):205–225, 2008.MathSciNetMATHCrossRef C. Hager, S. Hüeber, and B. I. Wohlmuth. A stable energy-conserving approach for frictional contact problems based on quadrature formulas. International Journal for Numerical Methods in Engineering, 73(2):205–225, 2008.MathSciNetMATHCrossRef
go back to reference J. O. Hallquist, G. L. Goudreau, and D. J. Benson. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107–137, 1985.MathSciNetMATHCrossRef J. O. Hallquist, G. L. Goudreau, and D. J. Benson. Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 51(1-3):107–137, 1985.MathSciNetMATHCrossRef
go back to reference G. Hansen. A jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. Journal of Computational Physics, 230(17):6546–6562, 2011.MathSciNetMATHCrossRef G. Hansen. A jacobian-free Newton Krylov method for mortar-discretized thermomechanical contact problems. Journal of Computational Physics, 230(17):6546–6562, 2011.MathSciNetMATHCrossRef
go back to reference S. Hartmann. Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. PhD thesis, Universität Stuttgart, 2007. S. Hartmann. Kontaktanalyse dünnwandiger Strukturen bei großen Deformationen. PhD thesis, Universität Stuttgart, 2007.
go back to reference S. Hartmann, S. Brunssen, E. Ramm, and B. I. Wohlmuth. Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 70(8):883–912, 2007.MathSciNetMATHCrossRef S. Hartmann, S. Brunssen, E. Ramm, and B. I. Wohlmuth. Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 70(8):883–912, 2007.MathSciNetMATHCrossRef
go back to reference S. Hartmann, J. Oliver, R. Weyler, J.C. Cante, and J.A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2607–2631, 2009.MathSciNetMATHCrossRef S. Hartmann, J. Oliver, R. Weyler, J.C. Cante, and J.A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 2: Numerical aspects. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2607–2631, 2009.MathSciNetMATHCrossRef
go back to reference H Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92:156–171, 1882.MATH H Hertz. Über die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 92:156–171, 1882.MATH
go back to reference C. Hesch and P. Betsch. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 77(10):1468–1500, 2009.MathSciNetMATHCrossRef C. Hesch and P. Betsch. A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 77(10):1468–1500, 2009.MathSciNetMATHCrossRef
go back to reference C. Hesch and P. Betsch. Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration. International Journal for Numerical Methods in Engineering, 82(3):329–358, 2010.MathSciNetMATH C. Hesch and P. Betsch. Transient three-dimensional domain decomposition problems: Frame-indifferent mortar constraints and conserving integration. International Journal for Numerical Methods in Engineering, 82(3):329–358, 2010.MathSciNetMATH
go back to reference C. Hesch and P. Betsch. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Computational Mechanics, 48:461–475, 2011. ISSN 0178-7675.MATHCrossRef C. Hesch and P. Betsch. Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Computational Mechanics, 48:461–475, 2011. ISSN 0178-7675.MATHCrossRef
go back to reference C. Hesch and P. Betsch. Isogeometric analysis and domain decomposition methods. Computer Methods in Applied Mechanics and Engineering, 213:104–112, 2012.MathSciNetMATHCrossRef C. Hesch and P. Betsch. Isogeometric analysis and domain decomposition methods. Computer Methods in Applied Mechanics and Engineering, 213:104–112, 2012.MathSciNetMATHCrossRef
go back to reference P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184(1):99 – 123, 2000.MathSciNetMATHCrossRef P. Hild. Numerical implementation of two nonconforming finite element methods for unilateral contact. Computer Methods in Applied Mechanics and Engineering, 184(1):99 – 123, 2000.MathSciNetMATHCrossRef
go back to reference M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semi-smooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.MathSciNetMATHCrossRef M. Hintermüller, K. Ito, and K. Kunisch. The primal-dual active set strategy as a semi-smooth Newton method. SIAM Journal on Optimization, 13(3):865–888, 2002.MathSciNetMATHCrossRef
go back to reference R. Holm. Electric contacts. Gebers, 1946. R. Holm. Electric contacts. Gebers, 1946.
go back to reference G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering. Wiley, 2000. G. A. Holzapfel. Nonlinear solid mechanics: A continuum approach for engineering. Wiley, 2000.
go back to reference S. Hüeber. Discretization techniques and efficient algorithms for contact problems. PhD thesis, Universität Stuttgart, 2008. S. Hüeber. Discretization techniques and efficient algorithms for contact problems. PhD thesis, Universität Stuttgart, 2008.
go back to reference S. Hüeber and B. I. Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering, 194(27-29):3147–3166, 2005.MathSciNetMATHCrossRef S. Hüeber and B. I. Wohlmuth. A primal-dual active set strategy for non-linear multibody contact problems. Computer Methods in Applied Mechanics and Engineering, 194(27-29):3147–3166, 2005.MathSciNetMATHCrossRef
go back to reference S. Hüeber and B. I. Wohlmuth. Thermo-mechanical contact problems on non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 198(15–16):1338–1350, 2009.MATHCrossRef S. Hüeber and B. I. Wohlmuth. Thermo-mechanical contact problems on non-matching meshes. Computer Methods in Applied Mechanics and Engineering, 198(15–16):1338–1350, 2009.MATHCrossRef
go back to reference S. Hüeber and B. I. Wohlmuth. Equilibration techniques for solving contact problems with Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 205–208:29–45, 2012.MathSciNetMATHCrossRef S. Hüeber and B. I. Wohlmuth. Equilibration techniques for solving contact problems with Coulomb friction. Computer Methods in Applied Mechanics and Engineering, 205–208:29–45, 2012.MathSciNetMATHCrossRef
go back to reference S. Hüeber, G. Stadler, and B. I. Wohlmuth. A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM Journal on Scientific Computing, 30(2):572–596, 2008.MathSciNetMATHCrossRef S. Hüeber, G. Stadler, and B. I. Wohlmuth. A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM Journal on Scientific Computing, 30(2):572–596, 2008.MathSciNetMATHCrossRef
go back to reference T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000. T. J. R. Hughes. The finite element method: linear static and dynamic finite element analysis. Dover Publications, 2000.
go back to reference T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai. A finite element method for a class of contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 8(3):249–276, 1976.MATHCrossRef T. J. R. Hughes, R. L. Taylor, J. L. Sackman, A. Curnier, and W. Kanoknukulchai. A finite element method for a class of contact-impact problems. Computer Methods in Applied Mechanics and Engineering, 8(3):249–276, 1976.MATHCrossRef
go back to reference T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.MathSciNetMATHCrossRef T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39):4135–4195, 2005.MathSciNetMATHCrossRef
go back to reference A. Ibrahimbegovic and L. Chorfi. Covariant principal axis formulation of associated coupled thermoplasticity at finite strains and its numerical implementation. International Journal of Solids and Structures, 39(2):499–528, 2002.MATHCrossRef A. Ibrahimbegovic and L. Chorfi. Covariant principal axis formulation of associated coupled thermoplasticity at finite strains and its numerical implementation. International Journal of Solids and Structures, 39(2):499–528, 2002.MATHCrossRef
go back to reference B. M. Irons. Numerical integration applied to finite element methods. In Proceedings Conference on the Use of Digital Computers in Structural Engineering. University of Newcastle, 1966. B. M. Irons. Numerical integration applied to finite element methods. In Proceedings Conference on the Use of Digital Computers in Structural Engineering. University of Newcastle, 1966.
go back to reference L. Johansson and A. Klarbring. Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Computer Methods in Applied Mechanics and Engineering, 105(2):181–210, 1993.MathSciNetMATHCrossRef L. Johansson and A. Klarbring. Thermoelastic frictional contact problems: modelling, finite element approximation and numerical realization. Computer Methods in Applied Mechanics and Engineering, 105(2):181–210, 1993.MathSciNetMATHCrossRef
go back to reference K. L. Johnson. Contact mechanics. Cambridge University Press, 1985. K. L. Johnson. Contact mechanics. Cambridge University Press, 1985.
go back to reference F. Jourdan and A. Samida. An implicit numerical method for wear modeling applied to a hip joint prosthesis problem. Computer Methods in Applied Mechanics and Engineering, 198(27-29):2209 – 2217, 2009.MATHCrossRef F. Jourdan and A. Samida. An implicit numerical method for wear modeling applied to a hip joint prosthesis problem. Computer Methods in Applied Mechanics and Engineering, 198(27-29):2209 – 2217, 2009.MATHCrossRef
go back to reference G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998.CrossRef G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95, 1998.CrossRef
go back to reference A. R. Khoei, H. Saffar, and M. Eghbalian. An efficient thermo–mechanical contact algorithm for modeling contact–impact problems. Asian Journal of Civil Engineering, 16(5):681–708, 2015. A. R. Khoei, H. Saffar, and M. Eghbalian. An efficient thermo–mechanical contact algorithm for modeling contact–impact problems. Asian Journal of Civil Engineering, 16(5):681–708, 2015.
go back to reference N. Kikuchi and J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.MATHCrossRef N. Kikuchi and J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.MATHCrossRef
go back to reference J.-Y. Kim and S.-K. Youn. Isogeometric contact analysis using mortar method. International Journal for Numerical Methods in Engineering, 89(12):1559–1581, 2012.MathSciNetMATHCrossRef J.-Y. Kim and S.-K. Youn. Isogeometric contact analysis using mortar method. International Journal for Numerical Methods in Engineering, 89(12):1559–1581, 2012.MathSciNetMATHCrossRef
go back to reference T. M. Kindo, T. A. Laursen, and J. E. Dolbow. Toward robust and accurate contact solvers for large deformation applications: a remapping/adaptivity framework for mortar-based methods. Computational Mechanics, 54(1):53–70, 2014.MathSciNetMATHCrossRef T. M. Kindo, T. A. Laursen, and J. E. Dolbow. Toward robust and accurate contact solvers for large deformation applications: a remapping/adaptivity framework for mortar-based methods. Computational Mechanics, 54(1):53–70, 2014.MathSciNetMATHCrossRef
go back to reference A. Konyukhov and K. Schweizerhof. On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering, 197(33–40):3045–3056, 2008.MathSciNetMATHCrossRef A. Konyukhov and K. Schweizerhof. On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering, 197(33–40):3045–3056, 2008.MathSciNetMATHCrossRef
go back to reference R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T.J.R. Hughes. Isogeometric collocation for large deformation elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 296:73–112, 2015.MathSciNetCrossRef R. Kruse, N. Nguyen-Thanh, L. De Lorenzis, and T.J.R. Hughes. Isogeometric collocation for large deformation elasticity and frictional contact problems. Computer Methods in Applied Mechanics and Engineering, 296:73–112, 2015.MathSciNetCrossRef
go back to reference B. P. Lamichhane and B. I. Wohlmuth. Biorthogonal bases with local support and approximation properties. Mathematics of Computation, 76:233–249, 2007.MathSciNetMATHCrossRef B. P. Lamichhane and B. I. Wohlmuth. Biorthogonal bases with local support and approximation properties. Mathematics of Computation, 76:233–249, 2007.MathSciNetMATHCrossRef
go back to reference B. P. Lamichhane, R. P. Stevenson, and B. I. Wohlmuth. Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numerische Mathematik, 102(1):93–121, 2005.MathSciNetMATHCrossRef B. P. Lamichhane, R. P. Stevenson, and B. I. Wohlmuth. Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases. Numerische Mathematik, 102(1):93–121, 2005.MathSciNetMATHCrossRef
go back to reference T. A. Laursen. Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Stanford University, 1992. T. A. Laursen. Formulation and treatment of frictional contact problems using finite elements. PhD thesis, Stanford University, 1992.
go back to reference T. A. Laursen. Computational contact and impact mechanics. Springer-Verlag Berlin Heidelberg, 2002.MATH T. A. Laursen. Computational contact and impact mechanics. Springer-Verlag Berlin Heidelberg, 2002.MATH
go back to reference T. A. Laursen and V. Chawla. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40(5):863–886, 1997.MathSciNetMATHCrossRef T. A. Laursen and V. Chawla. Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering, 40(5):863–886, 1997.MathSciNetMATHCrossRef
go back to reference T. A. Laursen and G. R. Love. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering, 53(2):245–274, 2002.MathSciNetMATHCrossRef T. A. Laursen and G. R. Love. Improved implicit integrators for transient impact problems - geometric admissibility within the conserving framework. International Journal for Numerical Methods in Engineering, 53(2):245–274, 2002.MathSciNetMATHCrossRef
go back to reference T. A. Laursen and J. C. Simo. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451–3485, 1993.MathSciNetMATHCrossRef T. A. Laursen and J. C. Simo. A continuum-based finite element formulation for the implicit solution of multibody, large deformation-frictional contact problems. International Journal for Numerical Methods in Engineering, 36(20):3451–3485, 1993.MathSciNetMATHCrossRef
go back to reference T. A. Laursen, M. A. Puso, and J. Sanders. Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Computer Methods in Applied Mechanics and Engineering, 205–208:3–15, 2012.MathSciNetMATHCrossRef T. A. Laursen, M. A. Puso, and J. Sanders. Mortar contact formulations for deformable-deformable contact: past contributions and new extensions for enriched and embedded interface formulations. Computer Methods in Applied Mechanics and Engineering, 205–208:3–15, 2012.MathSciNetMATHCrossRef
go back to reference J. Lengiewicz and S. Stupkiewicz. Continuum framework for finite element modelling of finite wear. Computer Methods in Applied Mechanics and Engineering, 205–208:178–188, 2012.MathSciNetMATHCrossRef J. Lengiewicz and S. Stupkiewicz. Continuum framework for finite element modelling of finite wear. Computer Methods in Applied Mechanics and Engineering, 205–208:178–188, 2012.MathSciNetMATHCrossRef
go back to reference J. Lengiewicz and S. Stupkiewicz. Efficient model of evolution of wear in quasi-steady-state sliding contacts. Wear, 303(12):611 – 621, 2013.CrossRef J. Lengiewicz and S. Stupkiewicz. Efficient model of evolution of wear in quasi-steady-state sliding contacts. Wear, 303(12):611 – 621, 2013.CrossRef
go back to reference J. Lu. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 200(5):726–741, 2011.MathSciNetMATHCrossRef J. Lu. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact. Computer Methods in Applied Mechanics and Engineering, 200(5):726–741, 2011.MathSciNetMATHCrossRef
go back to reference J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity. Dover, 1994. J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elasticity. Dover, 1994.
go back to reference M. E. Matzen, T. Cichosz, and M. Bischoff. A point to segment contact formulation for isogeometric, NURBS based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39, 2013.MathSciNetMATHCrossRef M. E. Matzen, T. Cichosz, and M. Bischoff. A point to segment contact formulation for isogeometric, NURBS based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39, 2013.MathSciNetMATHCrossRef
go back to reference I. R. McColl, J. Ding, and S. B. Leen. Finite element simulation and experimental validation of fretting wear. Wear, 256(11-12):1114 – 1127, 2004.CrossRef I. R. McColl, J. Ding, and S. B. Leen. Finite element simulation and experimental validation of fretting wear. Wear, 256(11-12):1114 – 1127, 2004.CrossRef
go back to reference T. W. McDevitt and T. A. Laursen. A mortar-finite element formulation for frictional contact problems. International Journal for Numerical Methods in Engineering, 48(10):1525–1547, 2000.MathSciNetMATHCrossRef T. W. McDevitt and T. A. Laursen. A mortar-finite element formulation for frictional contact problems. International Journal for Numerical Methods in Engineering, 48(10):1525–1547, 2000.MathSciNetMATHCrossRef
go back to reference H. C. Meng and K. C. Ludema. Wear models and predictive equations: their form and content. Wear, 181–183:443–457, 1995.CrossRef H. C. Meng and K. C. Ludema. Wear models and predictive equations: their form and content. Wear, 181–183:443–457, 1995.CrossRef
go back to reference J. F. Molinari, M. Ortiz, R. Radovitzky, and E. A. Repetto. Finite element modeling of dry sliding wear in metals. Engineering Computations, 18(3/4):592–610, 2001.MATHCrossRef J. F. Molinari, M. Ortiz, R. Radovitzky, and E. A. Repetto. Finite element modeling of dry sliding wear in metals. Engineering Computations, 18(3/4):592–610, 2001.MATHCrossRef
go back to reference V. G. Oancea and T. A. Laursen. A finite element formulation of thermomechanical rate-dependent frictional sliding. International Journal for Numerical Methods in Engineering, 40(23):4275–4311, 1997.MATHCrossRef V. G. Oancea and T. A. Laursen. A finite element formulation of thermomechanical rate-dependent frictional sliding. International Journal for Numerical Methods in Engineering, 40(23):4275–4311, 1997.MATHCrossRef
go back to reference R. W. Ogden. Non-linear elastic deformations. Dover Publications, 1997. R. W. Ogden. Non-linear elastic deformations. Dover Publications, 1997.
go back to reference J. Oliver, S. Hartmann, J. C. Cante, R. Weyler, and J. A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2591–2606, 2009.MathSciNetMATHCrossRef J. Oliver, S. Hartmann, J. C. Cante, R. Weyler, and J. A. Hernandez. A contact domain method for large deformation frictional contact problems. Part 1: Theoretical basis. Computer Methods in Applied Mechanics and Engineering, 198(33-36):2591–2606, 2009.MathSciNetMATHCrossRef
go back to reference M. Öqvist. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 249(12):6–11, 2001.CrossRef M. Öqvist. Numerical simulations of mild wear using updated geometry with different step size approaches. Wear, 249(12):6–11, 2001.CrossRef
go back to reference P. Oswald and B. Wohlmuth. On polynomial reproduction of dual FE bases. In Thirteenth International Conference on Domain Decomposition Methods, pages 85–96, 2001. P. Oswald and B. Wohlmuth. On polynomial reproduction of dual FE bases. In Thirteenth International Conference on Domain Decomposition Methods, pages 85–96, 2001.
go back to reference P. Põdra and S. Andersson. Simulating sliding wear with finite element method. Tribology International, 32(2):71–81, 1999.CrossRef P. Põdra and S. Andersson. Simulating sliding wear with finite element method. Tribology International, 32(2):71–81, 1999.CrossRef
go back to reference I. Páczelt and Z. Mróz. On optimal contact shapes generated by wear. International Journal for Numerical Methods in Engineering, 63(9):1250–1287, 2005.MathSciNetMATHCrossRef I. Páczelt and Z. Mróz. On optimal contact shapes generated by wear. International Journal for Numerical Methods in Engineering, 63(9):1250–1287, 2005.MathSciNetMATHCrossRef
go back to reference I. Páczelt and Z. Mróz. Optimal shapes of contact interfaces due to sliding wear in the steady relative motion. International Journal of Solids and Structures, 44(34):895–925, 2007.MATHCrossRef I. Páczelt and Z. Mróz. Optimal shapes of contact interfaces due to sliding wear in the steady relative motion. International Journal of Solids and Structures, 44(34):895–925, 2007.MATHCrossRef
go back to reference I. Páczelt, S. Kucharski, and Z. Mróz. The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter. Wear, 274-275:127–148, 2012.CrossRef I. Páczelt, S. Kucharski, and Z. Mróz. The experimental and numerical analysis of quasi-steady wear processes for a sliding spherical indenter. Wear, 274-275:127–148, 2012.CrossRef
go back to reference D. Pantuso, K.-J. Bathe, and P. A. Bouzinov. A finite element procedure for the analysis of thermo-mechanical solids in contact. Computers & Structures, 75(6):551–573, 2000.CrossRef D. Pantuso, K.-J. Bathe, and P. A. Bouzinov. A finite element procedure for the analysis of thermo-mechanical solids in contact. Computers & Structures, 75(6):551–573, 2000.CrossRef
go back to reference P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3):373–389, 1992.MATHCrossRef P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3):373–389, 1992.MATHCrossRef
go back to reference C. Paulin, S. Fouvry, and C. Meunier. Finite element modelling of fretting wear surface evolution: Application to a Ti-6A1-4V contact. Wear, 264(12):26–36, 2008.CrossRef C. Paulin, S. Fouvry, and C. Meunier. Finite element modelling of fretting wear surface evolution: Application to a Ti-6A1-4V contact. Wear, 264(12):26–36, 2008.CrossRef
go back to reference A. Popp. Mortar methods for computational contact mechanics and general interface problems. PhD thesis, Technische Universität München, 2012. A. Popp. Mortar methods for computational contact mechanics and general interface problems. PhD thesis, Technische Universität München, 2012.
go back to reference A. Popp and W. A. Wall. Dual mortar methods for computational contact mechanics – overview and recent developments. GAMM-Mitteilungen, 37(1):66–84, 2014.MathSciNetMATHCrossRef A. Popp and W. A. Wall. Dual mortar methods for computational contact mechanics – overview and recent developments. GAMM-Mitteilungen, 37(1):66–84, 2014.MathSciNetMATHCrossRef
go back to reference A. Popp, M. W. Gee, and W. A. Wall. A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79(11):1354–1391, 2009.MathSciNetMATHCrossRef A. Popp, M. W. Gee, and W. A. Wall. A finite deformation mortar contact formulation using a primal-dual active set strategy. International Journal for Numerical Methods in Engineering, 79(11):1354–1391, 2009.MathSciNetMATHCrossRef
go back to reference A. Popp, M. Gitterle, M. W. Gee, and W. A. Wall. A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 83(11):1428–1465, 2010.MathSciNetMATHCrossRef A. Popp, M. Gitterle, M. W. Gee, and W. A. Wall. A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering, 83(11):1428–1465, 2010.MathSciNetMATHCrossRef
go back to reference A. Popp, B. I. Wohlmuth, M. W. Gee, and W. A. Wall. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34:B421–B446, 2012.MathSciNetMATHCrossRef A. Popp, B. I. Wohlmuth, M. W. Gee, and W. A. Wall. Dual quadratic mortar finite element methods for 3D finite deformation contact. SIAM Journal on Scientific Computing, 34:B421–B446, 2012.MathSciNetMATHCrossRef
go back to reference A. Popp, A. Seitz, M. W. Gee, and W. A. Wall. A dual mortar approach for improved robustness and consistency of 3D contact algorithms. Computer Methods in Applied Mechanics and Engineering, 264:67–80, 2013.MathSciNetMATHCrossRef A. Popp, A. Seitz, M. W. Gee, and W. A. Wall. A dual mortar approach for improved robustness and consistency of 3D contact algorithms. Computer Methods in Applied Mechanics and Engineering, 264:67–80, 2013.MathSciNetMATHCrossRef
go back to reference M. A. Puso. A 3D mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59(3):315–336, 2004.MathSciNetMATHCrossRef M. A. Puso. A 3D mortar method for solid mechanics. International Journal for Numerical Methods in Engineering, 59(3):315–336, 2004.MathSciNetMATHCrossRef
go back to reference M. A. Puso and T. A. Laursen. A 3D contact smoothing method using Gregory patches. International Journal for Numerical Methods in Engineering, 54(8):1161–1194, 2002.MathSciNetMATHCrossRef M. A. Puso and T. A. Laursen. A 3D contact smoothing method using Gregory patches. International Journal for Numerical Methods in Engineering, 54(8):1161–1194, 2002.MathSciNetMATHCrossRef
go back to reference M. A. Puso and T. A. Laursen. A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6-8):601–629, 2004a.MATHCrossRef M. A. Puso and T. A. Laursen. A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6-8):601–629, 2004a.MATHCrossRef
go back to reference M. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4891–4913, 2004b.MathSciNetMATHCrossRef M. A. Puso and T. A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193(45-47):4891–4913, 2004b.MathSciNetMATHCrossRef
go back to reference M. A. Puso, T. A. Laursen, and J. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Computer Methods in Applied Mechanics and Engineering, 197(6-8):555–566, 2008.MathSciNetMATHCrossRef M. A. Puso, T. A. Laursen, and J. Solberg. A segment-to-segment mortar contact method for quadratic elements and large deformations. Computer Methods in Applied Mechanics and Engineering, 197(6-8):555–566, 2008.MathSciNetMATHCrossRef
go back to reference E. Rabinowicz. Friction and wear of materials. Wiley, 1995. E. Rabinowicz. Friction and wear of materials. Wiley, 1995.
go back to reference A. Reali and T. J. R. Hughes. An introduction to isogeometric collocation methods. In Isogeometric Methods for Numerical Simulation, pages 173–204. Springer, 2015.MATH A. Reali and T. J. R. Hughes. An introduction to isogeometric collocation methods. In Isogeometric Methods for Numerical Simulation, pages 173–204. Springer, 2015.MATH
go back to reference J. N. Reddy. An introduction to nonlinear finite element analysis. Oxford University Press, 2004.CrossRef J. N. Reddy. An introduction to nonlinear finite element analysis. Oxford University Press, 2004.CrossRef
go back to reference L. Rodríguez-Tembleque, R. Abascal, and M. H. Aliabadi. Anisotropic wear framework for 3d contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244:1–19, 2012.MathSciNetMATHCrossRef L. Rodríguez-Tembleque, R. Abascal, and M. H. Aliabadi. Anisotropic wear framework for 3d contact and rolling problems. Computer Methods in Applied Mechanics and Engineering, 241-244:1–19, 2012.MathSciNetMATHCrossRef
go back to reference R. A. Sauer. Enriched contact finite elements for stable peeling computations. International Journal for Numerical Methods in Engineering, 87(6):593–616, 2011.MathSciNetMATHCrossRef R. A. Sauer. Enriched contact finite elements for stable peeling computations. International Journal for Numerical Methods in Engineering, 87(6):593–616, 2011.MathSciNetMATHCrossRef
go back to reference R. A Sauer and L. De Lorenzis. An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4):251–280, 2015.MathSciNetMATHCrossRef R. A Sauer and L. De Lorenzis. An unbiased computational contact formulation for 3D friction. International Journal for Numerical Methods in Engineering, 101(4):251–280, 2015.MathSciNetMATHCrossRef
go back to reference K. Schweizerhof and A. Konyukhov. Covariant description for frictional contact problems. Computational Mechanics, 35(3):190–213, 2005.MATHCrossRef K. Schweizerhof and A. Konyukhov. Covariant description for frictional contact problems. Computational Mechanics, 35(3):190–213, 2005.MATHCrossRef
go back to reference L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54:483–492, 1990.MathSciNetMATHCrossRef L. R. Scott and S. Zhang. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Mathematics of Computation, 54:483–492, 1990.MathSciNetMATHCrossRef
go back to reference A. Seitz, A. Popp, and W. A Wall. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228–254, 2015.MathSciNetCrossRef A. Seitz, A. Popp, and W. A Wall. A semi-smooth newton method for orthotropic plasticity and frictional contact at finite strains. Computer Methods in Applied Mechanics and Engineering, 285:228–254, 2015.MathSciNetCrossRef
go back to reference A. Seitz, P. Farah, J. Kremheller, B. I Wohlmuth, W. A Wall, and A. Popp. Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301:259–280, 2016.MathSciNetCrossRef A. Seitz, P. Farah, J. Kremheller, B. I Wohlmuth, W. A Wall, and A. Popp. Isogeometric dual mortar methods for computational contact mechanics. Computer Methods in Applied Mechanics and Engineering, 301:259–280, 2016.MathSciNetCrossRef
go back to reference A. Seitz, W. A. Wall, and A. Popp. A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Advanced Modeling and Simulation in Engineering Sciences, 5:5, 2018.CrossRef A. Seitz, W. A. Wall, and A. Popp. A computational approach for thermo-elasto-plastic frictional contact based on a monolithic formulation using non-smooth nonlinear complementarity functions. Advanced Modeling and Simulation in Engineering Sciences, 5:5, 2018.CrossRef
go back to reference I. Serre, M. Bonnet, and R. M. Pradeilles-Duval. Modelling an abrasive wear experiment by the boundary element method. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 329(11):803–808, 2001.CrossRef I. Serre, M. Bonnet, and R. M. Pradeilles-Duval. Modelling an abrasive wear experiment by the boundary element method. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 329(11):803–808, 2001.CrossRef
go back to reference P. Seshaiyer and M. Suri. hp submeshing via non-conforming finite element methods. Computer Methods in Applied Mechanics and Engineering, 189(3):1011–1030, 2000.MathSciNetMATHCrossRef P. Seshaiyer and M. Suri. hp submeshing via non-conforming finite element methods. Computer Methods in Applied Mechanics and Engineering, 189(3):1011–1030, 2000.MathSciNetMATHCrossRef
go back to reference G. K. Sfantos and M. H. Aliabadi. Wear simulation using an incremental sliding boundary element method. Wear, 260(9-10):1119 – 1128, 2006.CrossRef G. K. Sfantos and M. H. Aliabadi. Wear simulation using an incremental sliding boundary element method. Wear, 260(9-10):1119 – 1128, 2006.CrossRef
go back to reference G. K. Sfantos and M. H. Aliabadi. A boundary element formulation for three-dimensional sliding wear simulation. Wear, 262(5-6):672 – 683, 2007.MATHCrossRef G. K. Sfantos and M. H. Aliabadi. A boundary element formulation for three-dimensional sliding wear simulation. Wear, 262(5-6):672 – 683, 2007.MATHCrossRef
go back to reference J. C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66(2):199–219, 1988.MathSciNetMATHCrossRef J. C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66(2):199–219, 1988.MathSciNetMATHCrossRef
go back to reference J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer, 1998. J. C. Simo and T. J. R. Hughes. Computational inelasticity. Springer, 1998.
go back to reference J. C. Simo and T. A. Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures, 42(1):97–116, 1992.MathSciNetMATHCrossRef J. C. Simo and T. A. Laursen. An augmented Lagrangian treatment of contact problems involving friction. Computers & Structures, 42(1):97–116, 1992.MathSciNetMATHCrossRef
go back to reference J. C. Simo, P. Wriggers, and R. L. Taylor. A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 50(2):163–180, 1985.MathSciNetMATHCrossRef J. C. Simo, P. Wriggers, and R. L. Taylor. A perturbed Lagrangian formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 50(2):163–180, 1985.MathSciNetMATHCrossRef
go back to reference J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100(1):63–116, 1992.MathSciNetMATHCrossRef J. C. Simo, N. Tarnow, and K. K. Wong. Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 100(1):63–116, 1992.MathSciNetMATHCrossRef
go back to reference L. Stainier and M. Ortiz. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity. International Journal of Solids and Structures, 47(5):705–715, 2010.MATHCrossRef L. Stainier and M. Ortiz. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity. International Journal of Solids and Structures, 47(5):705–715, 2010.MATHCrossRef
go back to reference N. Strömberg. An augmented lagrangian method for fretting problems. European Journal of Mechanics – A/Solids, 16:573–593, 1996.MathSciNetMATH N. Strömberg. An augmented lagrangian method for fretting problems. European Journal of Mechanics – A/Solids, 16:573–593, 1996.MathSciNetMATH
go back to reference N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. International Journal of Solids and Structures, 33(13):1817–1836, 1996.MathSciNetMATHCrossRef N. Strömberg, L. Johansson, and A. Klarbring. Derivation and analysis of a generalized standard model for contact, friction and wear. International Journal of Solids and Structures, 33(13):1817–1836, 1996.MathSciNetMATHCrossRef
go back to reference S. Stupkiewicz. An ALE formulation for implicit time integration of quasi-steady-state wear problems. Computer Methods in Applied Mechanics and Engineering, 260:130–142, 2013.MathSciNetMATHCrossRef S. Stupkiewicz. An ALE formulation for implicit time integration of quasi-steady-state wear problems. Computer Methods in Applied Mechanics and Engineering, 260:130–142, 2013.MathSciNetMATHCrossRef
go back to reference R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan. The patch test: A condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, 22(1):39–62, 1986.MathSciNetMATHCrossRef R. L. Taylor, J. C. Simo, O. C. Zienkiewicz, and A. C. H. Chan. The patch test: A condition for assessing FEM convergence. International Journal for Numerical Methods in Engineering, 22(1):39–62, 1986.MathSciNetMATHCrossRef
go back to reference I. Temizer. Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(8):582–607, 2014.MathSciNetMATHCrossRef I. Temizer. Multiscale thermomechanical contact: computational homogenization with isogeometric analysis. International Journal for Numerical Methods in Engineering, 97(8):582–607, 2014.MathSciNetMATHCrossRef
go back to reference I. Temizer, P. Wriggers, and T. J. R. Hughes. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200(9–12):1100–1112, 2011.MathSciNetMATHCrossRef I. Temizer, P. Wriggers, and T. J. R. Hughes. Contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 200(9–12):1100–1112, 2011.MathSciNetMATHCrossRef
go back to reference I. Temizer, P. Wriggers, and T. J. R. Hughes. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209–212:115–128, 2012.MathSciNetMATHCrossRef I. Temizer, P. Wriggers, and T. J. R. Hughes. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering, 209–212:115–128, 2012.MathSciNetMATHCrossRef
go back to reference S. P. Timoshenko and J. N. Goodier. Theory of elasticity. McGraw-Hill, 1970. S. P. Timoshenko and J. N. Goodier. Theory of elasticity. McGraw-Hill, 1970.
go back to reference M. Tur, F. J. Fuenmayor, and P. Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198(37-40):2860–2873, 2009.MathSciNetMATHCrossRef M. Tur, F. J. Fuenmayor, and P. Wriggers. A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 198(37-40):2860–2873, 2009.MathSciNetMATHCrossRef
go back to reference M. Tur, E. Giner, F.J. Fuenmayor, and P. Wriggers. 2d contact smooth formulation based on the mortar method. Computer Methods in Applied Mechanics and Engineering, 247-248:1–14, 2012.MathSciNetMATHCrossRef M. Tur, E. Giner, F.J. Fuenmayor, and P. Wriggers. 2d contact smooth formulation based on the mortar method. Computer Methods in Applied Mechanics and Engineering, 247-248:1–14, 2012.MathSciNetMATHCrossRef
go back to reference R. Unger, M. C. Haupt, and P. Horst. Application of Lagrange multipliers for coupled problems in fluid and structural interactions. Computers & Structures, 85(11-14):796–809, 2007.MathSciNetCrossRef R. Unger, M. C. Haupt, and P. Horst. Application of Lagrange multipliers for coupled problems in fluid and structural interactions. Computers & Structures, 85(11-14):796–809, 2007.MathSciNetCrossRef
go back to reference J. R. Williams and R. O’Connor. Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4):279–304, 1999.MathSciNetCrossRef J. R. Williams and R. O’Connor. Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering, 6(4):279–304, 1999.MathSciNetCrossRef
go back to reference B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3):989–1012, 2000.MathSciNetMATHCrossRef B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3):989–1012, 2000.MathSciNetMATHCrossRef
go back to reference B. I. Wohlmuth. Discretization methods and iterative solvers based on domain decomposition. Springer-Verlag Berlin Heidelberg, 2001.MATHCrossRef B. I. Wohlmuth. Discretization methods and iterative solvers based on domain decomposition. Springer-Verlag Berlin Heidelberg, 2001.MATHCrossRef
go back to reference B. I. Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica, 20:569–734, 2011.MathSciNetMATHCrossRef B. I. Wohlmuth. Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica, 20:569–734, 2011.MathSciNetMATHCrossRef
go back to reference B. I. Wohlmuth, A. Popp, M. W. Gee, and W. A. Wall. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49:735–747, 2012.MathSciNetMATHCrossRef B. I. Wohlmuth, A. Popp, M. W. Gee, and W. A. Wall. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics, 49:735–747, 2012.MathSciNetMATHCrossRef
go back to reference P. Wriggers and C. Miehe. Contact constraints within coupled thermomechanical analysis - a finite element model. Computer Methods in Applied Mechanics and Engineering, 113(3):301–319, 1994.MathSciNetMATHCrossRef P. Wriggers and C. Miehe. Contact constraints within coupled thermomechanical analysis - a finite element model. Computer Methods in Applied Mechanics and Engineering, 113(3):301–319, 1994.MathSciNetMATHCrossRef
go back to reference P. Wriggers and O. Scherf. An adaptive finite element algorithm for contact problems in plasticity. Computational Mechanics, 17(1):88–97, 1995.MATHCrossRef P. Wriggers and O. Scherf. An adaptive finite element algorithm for contact problems in plasticity. Computational Mechanics, 17(1):88–97, 1995.MATHCrossRef
go back to reference P. Wriggers and G. Zavarise. On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 13(6):429–438, 1997.MathSciNetMATHCrossRef P. Wriggers and G. Zavarise. On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 13(6):429–438, 1997.MathSciNetMATHCrossRef
go back to reference P. Wriggers, T. Vu Van, and E. Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37(3):319–331, 1990.MATHCrossRef P. Wriggers, T. Vu Van, and E. Stein. Finite element formulation of large deformation impact-contact problems with friction. Computers & Structures, 37(3):319–331, 1990.MATHCrossRef
go back to reference P. Wriggers, L. Krstulovic-Opara, and J. Korelc. Smooth C1-interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51(12):1469–1495, 2001.MathSciNetMATHCrossRef P. Wriggers, L. Krstulovic-Opara, and J. Korelc. Smooth C1-interpolations for two-dimensional frictional contact problems. International Journal for Numerical Methods in Engineering, 51(12):1469–1495, 2001.MathSciNetMATHCrossRef
go back to reference H. L. Xing and A. Makinouchi. Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Computer Methods in Applied Mechanics and Engineering, 191(37):4193–4214, 2002.MATHCrossRef H. L. Xing and A. Makinouchi. Three dimensional finite element modeling of thermomechanical frictional contact between finite deformation bodies using R-minimum strategy. Computer Methods in Applied Mechanics and Engineering, 191(37):4193–4214, 2002.MATHCrossRef
go back to reference B. Yang and T. A. Laursen. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Computational Mechanics, 41(2):189–205, 2008.MathSciNetMATHCrossRef B. Yang and T. A. Laursen. A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Computational Mechanics, 41(2):189–205, 2008.MathSciNetMATHCrossRef
go back to reference B. Yang and T. A. Laursen. A mortar-finite element approach to lubricated contact problems. Computer Methods in Applied Mechanics and Engineering, 198(47-48):3656–3669, 2009.MathSciNetMATHCrossRef B. Yang and T. A. Laursen. A mortar-finite element approach to lubricated contact problems. Computer Methods in Applied Mechanics and Engineering, 198(47-48):3656–3669, 2009.MathSciNetMATHCrossRef
go back to reference B. Yang, Tod A. Laursen, and X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. International Journal for Numerical Methods in Engineering, 62(9):1183–1225, 2005.MathSciNetMATHCrossRef B. Yang, Tod A. Laursen, and X. Meng. Two dimensional mortar contact methods for large deformation frictional sliding. International Journal for Numerical Methods in Engineering, 62(9):1183–1225, 2005.MathSciNetMATHCrossRef
go back to reference Q. Yang, L. Stainier, and M. Ortiz. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids, 54(2):401–424, 2006.MathSciNetMATHCrossRef Q. Yang, L. Stainier, and M. Ortiz. A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. Journal of the Mechanics and Physics of Solids, 54(2):401–424, 2006.MathSciNetMATHCrossRef
go back to reference G. Zavarise and P. Wriggers. Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 49(8):977–1006, 2000.MATHCrossRef G. Zavarise and P. Wriggers. Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 49(8):977–1006, 2000.MATHCrossRef
go back to reference G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler. Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal for Numerical Methods in Engineering, 35(4):767–785, 1992.MATHCrossRef G. Zavarise, P. Wriggers, E. Stein, and B. A. Schrefler. Real contact mechanisms and finite element formulation - a coupled thermomechanical approach. International Journal for Numerical Methods in Engineering, 35(4):767–785, 1992.MATHCrossRef
go back to reference O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, 2005. O. C. Zienkiewicz and R. L. Taylor. The finite element method for solid and structural mechanics. Elsevier Butterworth-Heinemann, 2005.
go back to reference O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: Its basis & fundamentals. Elsevier Butterworth-Heinemann, 2005. O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: Its basis & fundamentals. Elsevier Butterworth-Heinemann, 2005.
Metadata
Title
State-of-the-Art Computational Methods for Finite Deformation Contact Modeling of Solids and Structures
Author
Alexander Popp
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-90155-8_1

Premium Partners