Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 6/2023

01-03-2023 | Original Research Article

Statistical Modeling of the Orowan Bypass Mechanism for Randomly Distributed Obstacles

Authors: Benjamin A. Szajewski, Joshua C. Crone, Jaroslaw Knap

Published in: Metallurgical and Materials Transactions A | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mesoscopic obstacles (e.g., precipitates) serve as an important strengthening and hardening mechanism in metallic alloy systems. Several example material systems include Mg and Al alloys as well as those found in nuclear reactors. Material strength in these systems originates from dislocation–obstacle interactions, in which the obstacles impede the motion of dislocations. The spatial distribution of obstacles in alloy systems is known to be stochastic in nature. Since alloy strengthening scales inversely with obstacle spacing, a spatial distribution of obstacles yields a statistical distribution of strengths. To elucidate relations between planar obstacle density (\(\rho \)), size (D), and the statistical distribution of alloy strength (\(\tau_{crit}\)), we conduct a large number of simulations, yielding statistically representative samples of \(\tau _{crit}\) for randomly generated spatial distributions of obstacles. We interpret the simulation results probabilistically, treating \(\tau _{crit}\) as a random variable with an associated distribution function. To rationalize our results, we develop a weakest link type statistical analysis in which the key quantity is the spatial distribution of link lengths between obstacles. Our analysis yields an expectation and standard deviation of \(\tau _{crit}\) which approximately scale with \(\sim \sqrt{\rho } \ln (D)\). Our analysis corroborates our simulations and unifies similar studies found in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
3.
6.
go back to reference P.S. Phani, K.E. Johanns, E.P. George, and G.M. Pharr: Acta Mater., 2013, vol. 61, pp. 2489–99.CrossRef P.S. Phani, K.E. Johanns, E.P. George, and G.M. Pharr: Acta Mater., 2013, vol. 61, pp. 2489–99.CrossRef
7.
go back to reference G. Peterffy, P.D. Ispanovity, M.E. Foster, X. Zhou, and R.B. Sills: Mater. Theory, 2020, vol. 4, p. 66.CrossRef G. Peterffy, P.D. Ispanovity, M.E. Foster, X. Zhou, and R.B. Sills: Mater. Theory, 2020, vol. 4, p. 66.CrossRef
8.
9.
go back to reference L.K. Aagesen, J. Miao, J.E. Allison, S. Aubry, and A. Arsenlis: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1908–15.CrossRef L.K. Aagesen, J. Miao, J.E. Allison, S. Aubry, and A. Arsenlis: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1908–15.CrossRef
10.
11.
go back to reference J.-F. Nie: 20-Physical metallurgy of light alloys, in Physical Metallurgy. D.E. Laughlin and K. Hono, eds., Elsevier, Oxford, 2014, pp. 2009–56.CrossRef J.-F. Nie: 20-Physical metallurgy of light alloys, in Physical Metallurgy. D.E. Laughlin and K. Hono, eds., Elsevier, Oxford, 2014, pp. 2009–56.CrossRef
12.
go back to reference J. Hernandez-Sandoval, M.H. Abdelaziz, H.W. Doty, and F.H. Samuel: Adv. Mater. Sci. Eng., 2021, vol. 2021, p. 9933168. J. Hernandez-Sandoval, M.H. Abdelaziz, H.W. Doty, and F.H. Samuel: Adv. Mater. Sci. Eng., 2021, vol. 2021, p. 9933168.
13.
go back to reference C.V. Singh and D.H. Warner: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2625–44.CrossRef C.V. Singh and D.H. Warner: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2625–44.CrossRef
14.
go back to reference G. Esteban-Manzanares, E. Martinez, J. Segurado, L. Capulungo, and J. Llorca: Acta Mater., 2019, vol. 162, pp. 189–201.CrossRef G. Esteban-Manzanares, E. Martinez, J. Segurado, L. Capulungo, and J. Llorca: Acta Mater., 2019, vol. 162, pp. 189–201.CrossRef
16.
go back to reference J. Miao, M. Li, J. Allison: Proceedings of the 9th international conference on magnesium alloys and their applications: in: 9th International Conference on Magnesium Alloys and Their Applications: July 8–12, 2012, 2012. J. Miao, M. Li, J. Allison: Proceedings of the 9th international conference on magnesium alloys and their applications: in: 9th International Conference on Magnesium Alloys and Their Applications: July 8–12, 2012, 2012.
17.
go back to reference S. Queyreau, G. Monnet, and B. Devincre: Acta Mater., 2010, vol. 58, pp. 5586–95.CrossRef S. Queyreau, G. Monnet, and B. Devincre: Acta Mater., 2010, vol. 58, pp. 5586–95.CrossRef
18.
go back to reference C. Sobie, N. Bertin, and L. Capulungo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3761–72.CrossRef C. Sobie, N. Bertin, and L. Capulungo: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3761–72.CrossRef
19.
20.
go back to reference A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M.J. Alava: Sci. Rep., 2018, vol. 8, p. 6914.CrossRef A. Lehtinen, L. Laurson, F. Granberg, K. Nordlund, and M.J. Alava: Sci. Rep., 2018, vol. 8, p. 6914.CrossRef
21.
22.
go back to reference R.C. Picu, R. Li, and Z. Xu: Mater. Sci. Eng. A, 2009, vol. 502, pp. 164–71.CrossRef R.C. Picu, R. Li, and Z. Xu: Mater. Sci. Eng. A, 2009, vol. 502, pp. 164–71.CrossRef
23.
go back to reference M. Hiratani and V.V. Bulatov: Philos. Mag. Lett., 2004, vol. 84, pp. 461–70.CrossRef M. Hiratani and V.V. Bulatov: Philos. Mag. Lett., 2004, vol. 84, pp. 461–70.CrossRef
25.
26.
go back to reference Y. Dong, T. Nogaret, and W.A. Curtin: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1954–60.CrossRef Y. Dong, T. Nogaret, and W.A. Curtin: Metall. Mater. Trans. A, 2010, vol. 41, pp. 1954–60.CrossRef
27.
go back to reference B.A. Szajewski, J.C. Crone, and J. Knap: Materialia, 2020, vol. 11, 100671.CrossRef B.A. Szajewski, J.C. Crone, and J. Knap: Materialia, 2020, vol. 11, 100671.CrossRef
28.
go back to reference J. Friedel: Dislocations: International Series of Monographs on Solid State Physics, Elsevier, Amsterdam, 2013. J. Friedel: Dislocations: International Series of Monographs on Solid State Physics, Elsevier, Amsterdam, 2013.
29.
30.
go back to reference Y. Gu, D.W. Eastman, K.J. Hemker, and J.A. El-Awady: J. Mech. Phys. Solids, 2021, vol. 147, 104245.CrossRef Y. Gu, D.W. Eastman, K.J. Hemker, and J.A. El-Awady: J. Mech. Phys. Solids, 2021, vol. 147, 104245.CrossRef
31.
go back to reference A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov: Modell. Simul. Mater. Sci. Eng., 2007, vol. 15, p. 553.CrossRef A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov: Modell. Simul. Mater. Sci. Eng., 2007, vol. 15, p. 553.CrossRef
32.
go back to reference C.R. Hutchinson, J.F. Nie, and S. Gorsse: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2093–05.CrossRef C.R. Hutchinson, J.F. Nie, and S. Gorsse: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2093–05.CrossRef
33.
go back to reference C.S. Roberts: Magnesium and Its Alloys, Wiley, Hoboken, 1960. C.S. Roberts: Magnesium and Its Alloys, Wiley, Hoboken, 1960.
35.
go back to reference T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Scripta Mater., 2007, vol. 56, pp. 313–16.CrossRef T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Scripta Mater., 2007, vol. 56, pp. 313–16.CrossRef
36.
go back to reference B.A. Szajewski, J.C. Crone, and J. Knap: Philos. Magn. Lett., 2019, vol. 99, pp. 77–86.CrossRef B.A. Szajewski, J.C. Crone, and J. Knap: Philos. Magn. Lett., 2019, vol. 99, pp. 77–86.CrossRef
37.
go back to reference D.J. Bacon, U.F. Kocks, and R.O. Scattergood: Philos. Magn., 1973, vol. 28, pp. 1241–63.CrossRef D.J. Bacon, U.F. Kocks, and R.O. Scattergood: Philos. Magn., 1973, vol. 28, pp. 1241–63.CrossRef
38.
go back to reference J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. Wiley, New York, 1982. J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. Wiley, New York, 1982.
Metadata
Title
Statistical Modeling of the Orowan Bypass Mechanism for Randomly Distributed Obstacles
Authors
Benjamin A. Szajewski
Joshua C. Crone
Jaroslaw Knap
Publication date
01-03-2023
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 6/2023
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-023-06990-5

Other articles of this Issue 6/2023

Metallurgical and Materials Transactions A 6/2023 Go to the issue

Premium Partners