Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2019

26-10-2018

Strain-Path Dependence of \( \{ 10\bar{1}2\} \) Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model

Authors: Lingyu Zhao, Xiaoqian Guo, Adrien Chapuis, Yunchang Xin, Qing Liu, Peidong Wu

Published in: Metallurgical and Materials Transactions A | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In magnesium and its alloys, \( \{ 10\bar{1}2\} \) tension twinning is an important deformation mode and is highly dependent on the strain path. Although the \( \{ 10\bar{1}2\} \)-twinning behavior has been extensively modeled, the effects of twinning models on the predicted results has seldom been compared. In this study, two typical twinning models, predominant twin reorientation (PTR) and twinning-detwinning (TDT), were chosen to simulate the \( \{ 10\bar{1}2\} \)twinning-predominant deformations of a Mg alloy AZ31 rolled plate, in compression along the transverse direction (TD-c) and in tension along the normal direction (ND-t), and the results were compared with experimental data. In addition to the strain-stress curves in the ND-t and TD-c, six other flow curves were used to determine the material-parameter inputs for the simulations with the elastic visco-plastic self-consistent (EVPSC) model. Compared with the PTR model, the TDT model permits better curve fitting and texture prediction. The PTR model cannot fit the TD-c and ND-t flow stresses simultaneously, whereas the TDT model can. The best-fit parameters for the two models are identical at low strains but diverge somewhat at high strains. The simulated twin volume fractions are similar in the two models, but the predicted textures are significantly different. The PTR model can only reproduce the texture at strains over 5 pct in the TD-c and cannot reproduce the deformed texture in the ND-t. In contrast, the TDT model can reproduce all the experimental textures. To fit both the compression and tension curves well, strong latent hardening of the critical resolved shear stress (CRSS) for \( \{ 10\bar{1}2\} \) twinning by other twinning systems (htt) is necessary. The htt favors the twin variant with the highest Schmid factor in compression. The htt increases the CRSS for all \( \{ 10\bar{1}2\} \) twinning systems in tension, but the CRSS for the dominant twinning system remains relatively low in compression.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference 2. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (4), pp. 202–05.CrossRef 2. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (4), pp. 202–05.CrossRef
3.
go back to reference 3. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313–26.CrossRef 3. H. Yu, C. Li, Y. Xin, A. Chapuis, X. Huang, and Q. Liu: Acta Mater., 2017, vol. 128, pp. 313–26.CrossRef
4.
go back to reference 4. S.-G. Hong, S.H. Park, and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.CrossRef 4. S.-G. Hong, S.H. Park, and C.S. Lee: Acta Mater., 2010, vol. 58, pp. 5873–85.CrossRef
5.
go back to reference 5. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399 (1–2), pp. 1–12.CrossRef 5. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399 (1–2), pp. 1–12.CrossRef
6.
go back to reference 6. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58 (19), pp. 6230–42.CrossRef 6. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58 (19), pp. 6230–42.CrossRef
7.
go back to reference 7. X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X. Mao: Mater. Des., 2016, vol. 98, pp. 333–43.CrossRef 7. X.Q. Guo, A. Chapuis, P.D. Wu, Q. Liu, and X. Mao: Mater. Des., 2016, vol. 98, pp. 333–43.CrossRef
8.
go back to reference 8. S.-G. Hong, S.H. Park, and C.S. Lee: Scripta Mater., 2011, vol. 64 (2), pp. 145–48.CrossRef 8. S.-G. Hong, S.H. Park, and C.S. Lee: Scripta Mater., 2011, vol. 64 (2), pp. 145–48.CrossRef
9.
go back to reference 9. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 550, pp. 138–45.CrossRef 9. Y. Pei, A. Godfrey, J. Jiang, Y.B. Zhang, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 550, pp. 138–45.CrossRef
10.
go back to reference 10. B. Wang, R. Xin, G. Huang, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 534, pp. 588–93.CrossRef 10. B. Wang, R. Xin, G. Huang, and Q. Liu: Mater. Sci. Eng. A, 2012, vol. 534, pp. 588–93.CrossRef
11.
go back to reference 11. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043–53.CrossRef 11. S. Mu, J.J. Jonas, and G. Gottstein: Acta Mater., 2012, vol. 60 (5), pp. 2043–53.CrossRef
12.
go back to reference 12. C. Guo, R. Xin, C. Ding, B. Song, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 609, pp. 92–101.CrossRef 12. C. Guo, R. Xin, C. Ding, B. Song, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 609, pp. 92–101.CrossRef
13.
go back to reference 13. C. Guo, R. Xin, J. Xu, B. Song, and Q. Liu: Mater. Des., 2015, vol. 76, pp. 71–76.CrossRef 13. C. Guo, R. Xin, J. Xu, B. Song, and Q. Liu: Mater. Des., 2015, vol. 76, pp. 71–76.CrossRef
14.
go back to reference 14. C. Lou, X. Zhang, and Y. Ren: Mater. Charact., 2015, vol. 107, pp. 249–54.CrossRef 14. C. Lou, X. Zhang, and Y. Ren: Mater. Charact., 2015, vol. 107, pp. 249–54.CrossRef
15.
go back to reference 15. Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, and T. Richeton: Acta Mater., 2015, vol. 83, pp. 17–28.CrossRef 15. Z.-Z. Shi, Y. Zhang, F. Wagner, P.-A. Juan, S. Berbenni, L. Capolungo, J.-S. Lecomte, and T. Richeton: Acta Mater., 2015, vol. 83, pp. 17–28.CrossRef
16.
go back to reference 16. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55 (11), pp. 3899–3910.CrossRef 16. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55 (11), pp. 3899–3910.CrossRef
17.
go back to reference 17. M. R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60 (4), pp. 1433–43.CrossRef 17. M. R. Barnett, M.D. Nave, and A. Ghaderi: Acta Mater., 2012, vol. 60 (4), pp. 1433–43.CrossRef
18.
go back to reference 18. P.D. Wu, X.Q. Guo, H. Qiao, and D.J. Lloyd: Mater. Sci. Eng. A, 2015, vol. 625, pp. 140–45.CrossRef 18. P.D. Wu, X.Q. Guo, H. Qiao, and D.J. Lloyd: Mater. Sci. Eng. A, 2015, vol. 625, pp. 140–45.CrossRef
19.
go back to reference 19. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos: Scripta Mater., 2013, vol. 68 (1), pp. 83–86.CrossRef 19. K. Hazeli, J. Cuadra, P.A. Vanniamparambil, and A. Kontsos: Scripta Mater., 2013, vol. 68 (1), pp. 83–86.CrossRef
20.
go back to reference 20. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Scripta Mater., 2011, vol. 65 (5), pp. 424–27.CrossRef 20. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig, and J. Bohlen: Scripta Mater., 2011, vol. 65 (5), pp. 424–27.CrossRef
21.
go back to reference 21. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59 (20), pp. 7824–39.CrossRef 21. A. Ghaderi and M.R. Barnett: Acta Mater., 2011, vol. 59 (20), pp. 7824–39.CrossRef
22.
go back to reference 22. O. Muránsky, M.R. Barnett, D.G. Carr, S.C. Vogel, and E.C. Oliver: Acta Mater., 2010, vol. 58 (5), pp. 1503–17.CrossRef 22. O. Muránsky, M.R. Barnett, D.G. Carr, S.C. Vogel, and E.C. Oliver: Acta Mater., 2010, vol. 58 (5), pp. 1503–17.CrossRef
23.
go back to reference 23. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef 23. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.CrossRef
24.
go back to reference 24. P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef 24. P.A. Turner and C.N. Tomé: Acta Metall. Mater., 1994, vol. 42, pp. 4143–53.CrossRef
25.
go back to reference 25. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef 25. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRef
26.
go back to reference 26. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161–93.CrossRef 26. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21 (6), pp. 1161–93.CrossRef
27.
go back to reference 27. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.CrossRef 27. S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48 (8), pp. 1003–08.CrossRef
28.
go back to reference 28. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.CrossRef 28. H. Wang, P.D. Wu, J. Wang, and C.N. Tomé: Int. J. Plast., 2013, vol. 49, pp. 36–52.CrossRef
29.
go back to reference 29. H. Qiao, P.D. Wu, X.Q. Guo, and S.R. Agnew: Scripta Mater., 2016, vol. 120, pp. 71–75.CrossRef 29. H. Qiao, P.D. Wu, X.Q. Guo, and S.R. Agnew: Scripta Mater., 2016, vol. 120, pp. 71–75.CrossRef
30.
go back to reference 30. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63 (7), pp. 737–40.CrossRef 30. W.B. Hutchinson and M.R. Barnett: Scripta Mater., 2010, vol. 63 (7), pp. 737–40.CrossRef
31.
go back to reference 31. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462 (1–2), pp. 29–36.CrossRef 31. A. Jain and S.R. Agnew: Mater. Sci. Eng. A, 2007, vol. 462 (1–2), pp. 29–36.CrossRef
32.
go back to reference 32. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids. Struct., 2010, vol. 47 (21), pp. 2905–17.CrossRef 32. H. Wang, B. Raeisinia, P.D. Wu, S.R. Agnew, and C.N. Tomé: Int. J. Solids. Struct., 2010, vol. 47 (21), pp. 2905–17.CrossRef
33.
go back to reference 33. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2011, vol. 528 (9), pp. 3489–95.CrossRef 33. Y.B. Chun and C.H.J. Davies: Mater. Sci. Eng. A, 2011, vol. 528 (9), pp. 3489–95.CrossRef
34.
go back to reference 34. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plast., 2015, vol. 68, pp. 1–20.CrossRef 34. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plast., 2015, vol. 68, pp. 1–20.CrossRef
35.
go back to reference 35. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol. 25 (5), pp. 861–80CrossRef 35. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plast., 2009, vol. 25 (5), pp. 861–80CrossRef
36.
go back to reference 36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Int. J. Plast., 2012, vols. 30–31, pp. 41–61.CrossRef 36. A.L. Oppedal, H. El Kadiri, C.N. Tomé, G.C. Kaschner, S.C. Vogel, J.C. Baird, and M.F. Horstemeyer: Int. J. Plast., 2012, vols. 30–31, pp. 41–61.CrossRef
37.
go back to reference 37. P.A. Lynch, M. Kunz, N. Tamura, and M.R. Barnett: Acta Mater., 2014, vol. 78, pp. 203–12.CrossRef 37. P.A. Lynch, M. Kunz, N. Tamura, and M.R. Barnett: Acta Mater., 2014, vol. 78, pp. 203–12.CrossRef
38.
go back to reference 38. W. Wu, H. Qiao, K. An, X. Guo, P.D. Wu, and P.K. Liaw: Int. J. Plast., 2014, vol. 62, pp. 105–20.CrossRef 38. W. Wu, H. Qiao, K. An, X. Guo, P.D. Wu, and P.K. Liaw: Int. J. Plast., 2014, vol. 62, pp. 105–20.CrossRef
39.
go back to reference C. Ma, A. Chapuis, X.Q. Guo, L. Zhao, P.D. Wu, Q. Liu, and X. Mao: Mater. Sci. Eng. A, 2017, vol. 682, pp. 332–40.CrossRef C. Ma, A. Chapuis, X.Q. Guo, L. Zhao, P.D. Wu, Q. Liu, and X. Mao: Mater. Sci. Eng. A, 2017, vol. 682, pp. 332–40.CrossRef
40.
go back to reference 40. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang: Mater. Sci. Eng. A, 2012, vol. 555, pp. 93–98.CrossRef 40. H. Wang, P.D. Wu, C.N. Tomé, and J. Wang: Mater. Sci. Eng. A, 2012, vol. 555, pp. 93–98.CrossRef
41.
go back to reference 41. T. Ebeling, C. Hartig, T. Laser, and R. Bormann: Mater. Sci. Eng. A, 2009, vol. 527 (1–2), pp. 272–80.CrossRef 41. T. Ebeling, C. Hartig, T. Laser, and R. Bormann: Mater. Sci. Eng. A, 2009, vol. 527 (1–2), pp. 272–80.CrossRef
42.
go back to reference 42. Z.Q. Wang, A. Chapuis, and Q. Liu: Trans. Nonferr. Met. Soc., 2015, vol. 25 (11), pp. 3595–3603.CrossRef 42. Z.Q. Wang, A. Chapuis, and Q. Liu: Trans. Nonferr. Met. Soc., 2015, vol. 25 (11), pp. 3595–3603.CrossRef
43.
go back to reference 43. H. Abdolvand and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 2240–48.CrossRef 43. H. Abdolvand and M.R. Daymond: Acta Mater., 2012, vol. 60, pp. 2240–48.CrossRef
44.
go back to reference 44. L.Y. Zhao, A. Chapuis, Y. Xin, and Q. Liu: J. Alloys Compd., 2017, vol. 710, pp. 159–65.CrossRef 44. L.Y. Zhao, A. Chapuis, Y. Xin, and Q. Liu: J. Alloys Compd., 2017, vol. 710, pp. 159–65.CrossRef
45.
go back to reference 45. P. Chen, B. Li, D. Culbertson, and Y. Jiang: Mater. Sci. Eng. A, 2017, vol. 709, pp. 40–45.CrossRef 45. P. Chen, B. Li, D. Culbertson, and Y. Jiang: Mater. Sci. Eng. A, 2017, vol. 709, pp. 40–45.CrossRef
46.
go back to reference 46. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594–612.CrossRef 46. H. Wang, P.D. Wu, C.N. Tomé, and Y. Huang: J. Mech. Phys. Solids, 2010, vol. 58, pp. 594–612.CrossRef
47.
go back to reference 47. R.A. Lebensohn, C.N. Tomé, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.CrossRef 47. R.A. Lebensohn, C.N. Tomé, and U.F. Kocks: Acta Metall. Mater., 1991, vol. 39, pp. 2667–80.CrossRef
48.
go back to reference 48. A. Chapuis, Z.Q. Wang, and Q. Liu: Mater. Sci. Eng. A, 2016, vol. 655, pp. 244–50.CrossRef 48. A. Chapuis, Z.Q. Wang, and Q. Liu: Mater. Sci. Eng. A, 2016, vol. 655, pp. 244–50.CrossRef
49.
50.
go back to reference 50. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 248–56.CrossRef 50. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 248–56.CrossRef
51.
go back to reference 51. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H.E. Kadiri, and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123–51.CrossRef 51. J.J. Bhattacharyya, F. Wang, P.D. Wu, W.R. Whittington, H.E. Kadiri, and S.R. Agnew: Int. J. Plast., 2016, vol. 81, pp. 123–51.CrossRef
52.
go back to reference 52. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li: Mater. Charact., 2015, vol. 108, pp. 42–50.CrossRef 52. B. Wang, L. Deng, C. Adrien, N. Guo, Z. Xu, and Q. Li: Mater. Charact., 2015, vol. 108, pp. 42–50.CrossRef
53.
go back to reference 53. H. Wang, P.D. Wu, K.P. Boyle, and K.W. Neale: Int. J. Solids. Struct., 2011, vol. 48, pp. 1000–10.CrossRef 53. H. Wang, P.D. Wu, K.P. Boyle, and K.W. Neale: Int. J. Solids. Struct., 2011, vol. 48, pp. 1000–10.CrossRef
54.
go back to reference 54. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: Acta Mater., 2013, vol. 61 (10), pp. 3549–63.CrossRef 54. H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector, S.R. Agnew, M. Cherkaoui, and S.C. Vogel: Acta Mater., 2013, vol. 61 (10), pp. 3549–63.CrossRef
55.
go back to reference 55. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel: Mater. Sci. Eng. A, 2010, vol. 527 (6), pp. 1383–94.CrossRef 55. O. Muránsky, M.R. Barnett, V. Luzin, and S. Vogel: Mater. Sci. Eng. A, 2010, vol. 527 (6), pp. 1383–94.CrossRef
56.
go back to reference 56. J. Wang, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2010, vol. 63 (7), pp. 741–46.CrossRef 56. J. Wang, I.J. Beyerlein, and C.N. Tomé: Scripta Mater., 2010, vol. 63 (7), pp. 741–46.CrossRef
57.
go back to reference 57. A. Chapuis and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 121–26CrossRef 57. A. Chapuis and Q. Liu: Comput. Mater. Sci., 2015, vol. 97, pp. 121–26CrossRef
58.
go back to reference 58. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (9), pp. 666–69.CrossRef 58. S.H. Park, S.-G. Hong, and C.S. Lee: Scripta Mater., 2010, vol. 62 (9), pp. 666–69.CrossRef
59.
go back to reference 59. H. Qiao, M.R. Barnett, and P.D. Wu: Int. J. Plast., 2016, vol. 86, pp. 70–92.CrossRef 59. H. Qiao, M.R. Barnett, and P.D. Wu: Int. J. Plast., 2016, vol. 86, pp. 70–92.CrossRef
60.
go back to reference 60. A. Chapuis, Y. Xin, X. Zhou, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 612, pp. 431–39.CrossRef 60. A. Chapuis, Y. Xin, X. Zhou, and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 612, pp. 431–39.CrossRef
Metadata
Title
Strain-Path Dependence of Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model
Authors
Lingyu Zhao
Xiaoqian Guo
Adrien Chapuis
Yunchang Xin
Qing Liu
Peidong Wu
Publication date
26-10-2018
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2019
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4955-y

Other articles of this Issue 1/2019

Metallurgical and Materials Transactions A 1/2019 Go to the issue

Premium Partners